
Master’s Internships 2025/2026 

  

A limited number of positions for a Master’s internship are available this year. These 
internships should be for A MINIMUM OF 5-6 MONTHS. Please send your application 
by email (CV + cover letter required) to syntheticlearner@gmail.com (unless another 
email is specified). Indicate in the email which topic(s)1 you are interested in. 

Subject 1: Self-supervised speech representation learning on synthetic data (Maxime Poli) 
 
Subject 2: Probing and benchmarking robustness of self-supervised speech representations 
(Maxime Poli) 
 
Subject 3: Emergent Communication for Graph-Structured Information: From One-Hot Vectors 
to Topological Structures (Jean-Baptiste Sevestre) 
 
Subject 4: On edge-device Voice Type Classification (Tarek Kunze, Théo Charlot) 

 

1 For the latest list of topics, see https://cognitive-ml.fr/docs/2026_CoML_Internship_projects.pdf 

https://cognitive-ml.fr/docs/2026_CoML_Internship_projects.pdf


S1: Self-supervised speech representation learning on 
synthetic data​

 
Recent advances in Self-supervised Speech Representation Learning (SSL) [1,2,3] have 
enabled the development of label-free representations that are valuable for various 
downstream tasks [4]. Those representations encode linguistic information directly 
extractable, would it be paralinguistics [5], phones [6] or word segment information [6,7]. In 
particular, recent models have representations that discriminate phonemes and triphones 
extremely well, even though the representations are still not invariant to the context [8]. 
 
This raises the following question: why is such linguistic information so easily accessible? Is 
this inherent to the masked representation learning objective? Or is this an artifact of training 
on speech gathered from audiobooks? This can be investigated by training models in the 
same way but on different datasets generated synthetically in a controlled way. Previous 
works [9,10] have shown that SSL models trained on natural noise still have representations 
that can discriminate phonemes, and that training only on synthetic audio from a synthesizer 
is possible and can match training on natural sounds [12]. 
 
The internship will go through the full pipeline of training SSL models: building the datasets, 
training the models and evaluating them thoroughly. The datasets generated will go from 
random noise, to natural noise, animal sounds, synthesized speech, and natural speech. 
There can also be specific controls, such as a given phonemic contrast, that can be inserted 
or not in the dataset, and then evaluated downstream. Finally, comprehensive evaluations 
will be done by probing for phoneme and word information, and by comparing those to 
results on downstream tasks [4].​
 
Junior supervision: Maxime Poli​
Senior supervision: Emmanuel Dupoux ​
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S2: Probing and benchmarking robustness of 
self-supervised speech representations​

 
This project starts from the same premise as Project S1: with self-supervised speech 
representation learning, we now have access to models that build contextual representations 
powerful enough for downstream tasks. Probing them reveals that they encode phonemic 
information at a first level. But is that all there is? Do they encode higher-order information 
about language, such as lexical or syntactic information? This project aims to develop a 
better understanding of the representation space of self-supervised representation models 
(wav2vec 2.0 [1], HuBERT [2], etc.). There are two main axes of work. 

The first dimension will be to investigate what is directly extractable beyond phonemic 
information, whether that includes finer phonetic details and articulatory features, or 
alternatively word-level [3] and syntactic information. Previous work has found orthogonality 
between speaker and phonetic information [4, 5] and has explored information completeness 
and accessibility in discretized representations [6]. We will employ evaluation methods 
including ABX discrimination tasks [7,8], mean average precision (MAP) over words [9], and 
information-theoretic metrics [2,6]. 

The second direction of work would be to understand how robust these representations are 
to variations in input stimuli, in terms of speaker and acoustic conditions. Previous work has 
already focused on building models that are more invariant [10,11], but there is a need for a 
deeper understanding of the existing variability. We want both to understand the structure of 
the representation space and to find a way to represent the model's uncertainty. This will 
require building an evaluation framework using methods such as Monte Carlo Dropout [12]. 

This internship topic does not involve pretraining speech models and will focus more on 
building careful evaluation protocols in order to contribute to a deeper understanding of 
self-supervised learning. 

Junior supervision: Maxime Poli​
Senior supervision: Emmanuel Dupoux 
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S3: Emergent Communication for Graph-Structured 
Information: From One-Hot Vectors to Topological Structures 

 
Context and Motivation 
Current paradigms in emergent communication research have made significant progress in 
understanding how artificial agents can develop communication protocols [1]. However, 
these approaches remain constrained by simplistic semantic representations—typically 
using discrete categorical spaces that are small-scale, explicitly hand-coded, and structurally 
limited. This stands in stark contrast to human language, which operates on complex 
semantic structures (likely graph-based), vast representational capacity, and implicit 
semantic spaces that themselves emerge through use. 
 
This internship focuses on systematically extending emergent communication beyond these 
limitations by investigating structural complexity. The goal is to address fundamental 
questions about how communication shapes reasoning and how agents can coordinate on 
complex conceptual representations rather than merely exchanging low-level perceptual 
features. 
 
Research Question 
How can emergent communication protocols effectively encode and transmit complex 
structural information, such as graphs, and what linguistic properties emerge when the 
semantic space has a non-linear topology? [2] 
 
This question is motivated by the fundamental challenge of linearization: how can 
multi-dimensional, graph-structured information be mapped onto a sequential 
communication channel? This mirrors the problem faced by human speakers when 
converting complex conceptual structures into linear utterances. 
 
Objectives & Methodology 
We will develop a communication framework where agents must transmit graph-structured 
information through a linear communication channel. This introduces the challenge of 
mapping a multi-dimensional structure onto a sequential message. Building on the approach 
of [3] and [4], we will design tasks requiring agents to reconstruct graph topologies from 
messages. 
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S4: On edge-device Voice Type Classification 
 
The Voice Type Classifier [1,3] is a multi-label speech classification model based on 
BabyHuBERT [1,2], an in-house speech representation model trained on a large corpus of 
child-centered naturalistic audio data [4,5]. 
 
Researchers studying early childhood language acquisition rely on such models to extract 
key information from large corpora of sensitive data. However, most do not have access to 
computing clusters with high-end GPUs, limiting their ability to process files efficiently. 
 
The goal of this internship is to develop a suite of models that can run efficiently on 
consumer hardware (laptops and small computers). 
 
The internship will be divided into two phases: 

-​ Phase 1 – Inference Optimization: You will survey the model compression literature 
and improve the inference efficiency of an already trained model. This will involve 
techniques such as quantization, pruning, and evaluating different inference engines. 

-​ Phase 2 – Compact Model Training: This more exploratory phase will focus on 
training a new suite of smaller models. You will investigate knowledge-distillation [6,7] 
techniques to transfer knowledge from the original model to more compact 
architectures, as well as parameter-efficient fine-tuning [8] methods to reduce 
computational requirements while preserving performance. 

 
This internship offers the opportunity to explore multiple facets of model compression and 
contribute to research with real-world impact for the child development research community. 
This internship is suitable for a Master 1 or 2 student. 
 
Junior supervision: Tarek Kunze, Théo Charlot​
Senior supervision: Emmanuel Dupoux, Alejandrina Cristia, Marvin Lavechin 
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