

Can AI help the study of language development?

Ecole des Hautes Etudes en Sciences Sociales

0. Introduction

- 2 deep scientific puzzles
- 4 traditional approaches
- The reverse engineering approach

- 1. Logical problem (bootstrapping)
 - learnability: from finite input to infinite competence
 - The input to the learner is finite (and small)
 - The adult competence is (almost) infinite
 - \rightarrow how?

- 1. Logical problem (bootstrapping)
 - learnability: from finite input to infinite competence
 - The input to the learner is finite (and small)
 - The adult competence is (almost) infinite

 \rightarrow how?

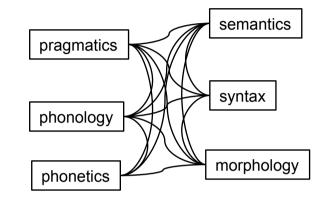
The longest sentence in French (856 words, Proust, A la recherche du temps perdu, Vol 4) Sans honneur que précaire, sans liberté que provisoire, [..] et de façon qu'à eux-mêmes il ne leur paraisse pas un vice.

- 1. Logical problem (bootstrapping)
 - learnability: from finite input to infinite competence
 - The input to the learner is finite (and small)
 - The adult competence is (almost) infinite
 → how?

The longest sentence in French (856 words, Proust, A la recherche du temps perdu, Vol 4) Sans honneur que précaire, sans liberté que provisoire, [..] et de façon qu'à eux-mêmes il ne leur paraisse pas un vice.

A longer sentence: Proust wrote « Sans honneur que précaire, sans liberté que provisoire, [..] et de façon qu'à eux-mêmes il ne leur paraisse pas un vice. »

- 1. Logical problem (bootstrapping)
 - learnability: from finite input to infinite competence
 - co-dependency: chicken vs eggs



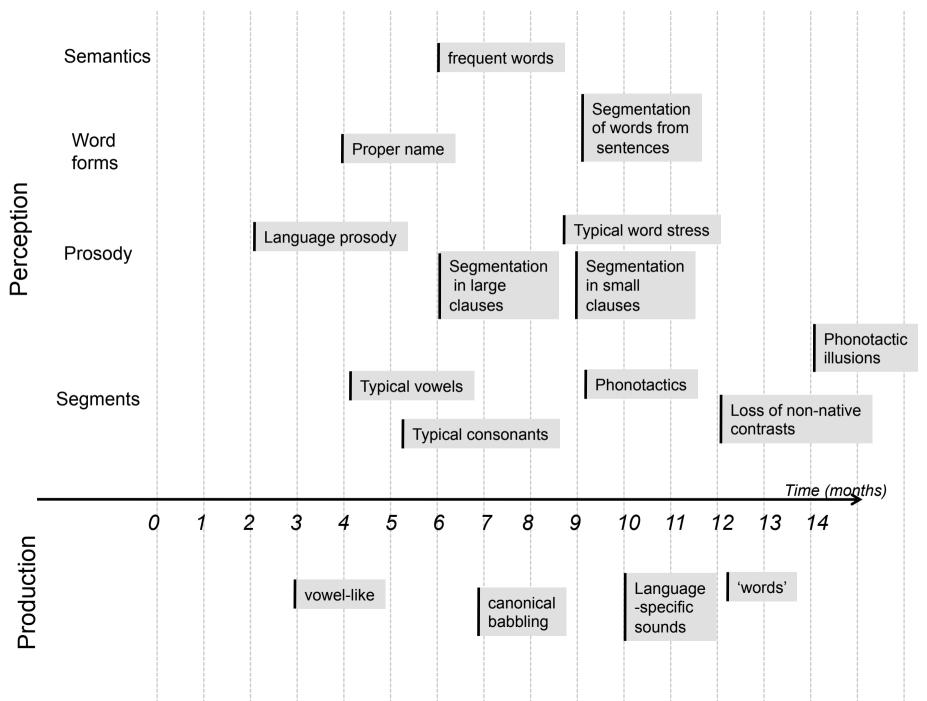
- Infants have a Language Acquisition Device (Chomsky, 1965) (an innate machine for learning any language)

-However, learning one component requires many others (e.g. learning the sounds requires the words and vice versa)

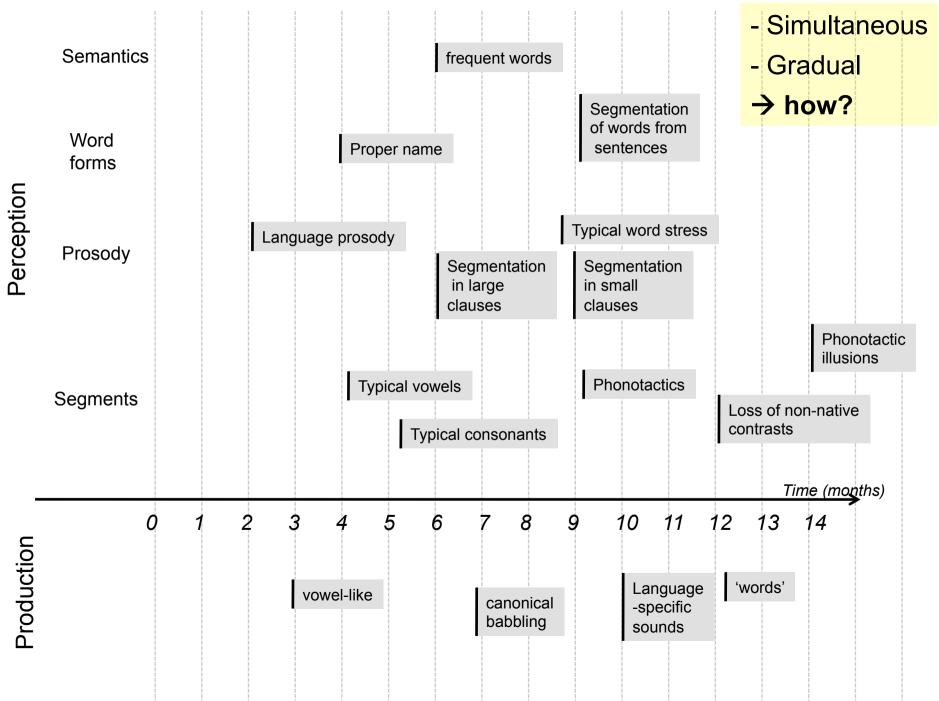
 \rightarrow how?

- 1. Logical problem (bootstrapping)
 - learnability: from finite input to infinite competence
 - co-dependency: chicken vs eggs
- 2. Explanatory problem
 - learning trajectories: simultaneous and gradual
 - resilience: nonlinear relationships between inputs and outcomes

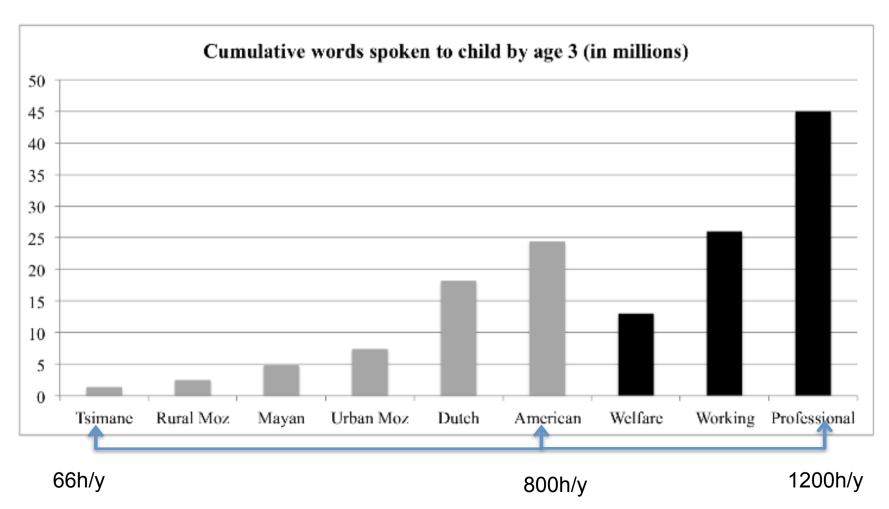
Learning trajectories



Learning trajectories



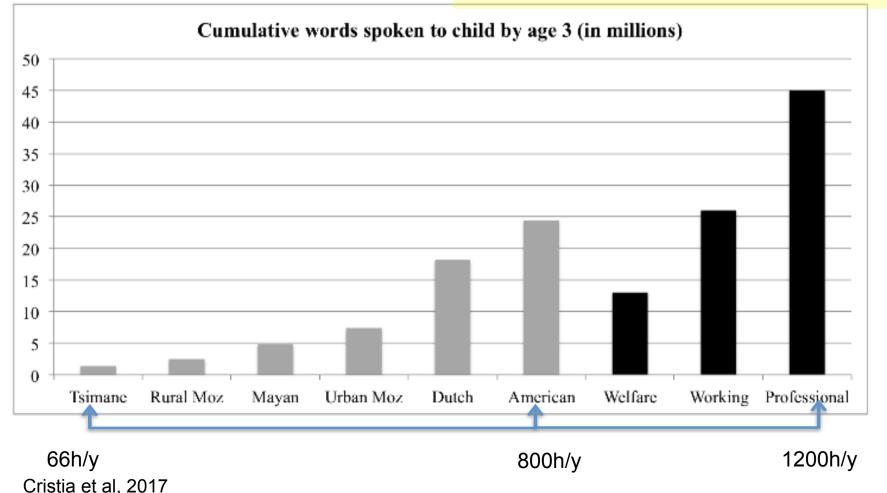
Resilience



Cristia et al, 2017

Resilience- large differences in amout of child
directed input (up to 2000%)- much smaller differences in
differences in outcome (language
landmarks: stable)

 \rightarrow how?



Four traditional approaches

- 1. Psycholinguistics (conceptual)
- 2. Psycholinguistics (experimental)
- 3. Formal linguistics
- 4. Developmental Al

1. Psycholinguistics

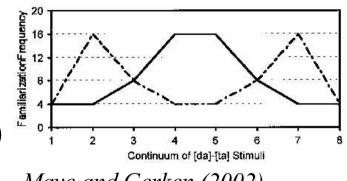
- Conceptual frameworks
 - Bootstrapping problem
 - semantic bootstrapping (Pinker, 1984)
 - syntactic bootstrapping (Gleitman, 1990)
 - prosodic bootstrapping (Morgan & Demuth, 1996)

\rightarrow do they work? can they be implemented?

- Explanatiory problem
 - Knowledge driven LAD (Lidz & Gagliardi 2015)
 - WRAPSA (Juczyk, 1997)
 - PRIMIR (Werker & Curtin, 2005)
 - Competition Model (Bates & MacWhinney, 1987)
 - Usage Based Theory (Tomasello, 2003)
 - \rightarrow can they be refuted? distinguished?

2. Psycholinguistics (experimental)

- Artificial language learning
 - distributional learning
 - (Maye, Werker & Gerken, 2002)

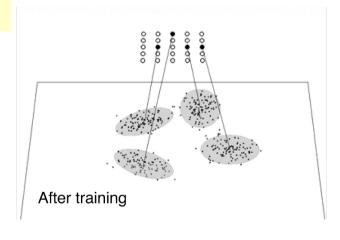


Maye and Gerken (2002)

 \rightarrow does it scale up to realistic input?

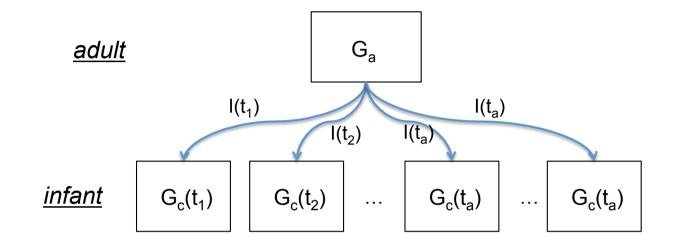
 rule learning (ABB vs ABC, Markus, et al.)

→ does this help language learning?



Vallabha, et al (2007

3. Formal learning theories/linguistics



- Learnability in the limit: Gold (1967)
- Phonological grammar: Tesar & Smolensky (1998), Dresher & Kaye (1990); etc
- Syntax: see Clark & Lappin (2011)

→ are the hypotheses valid in real life?

4. Developmental Artificial Intelligence

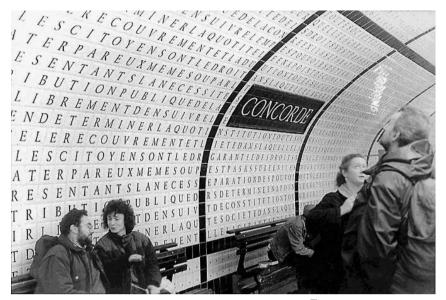
 language learning=learning a compact representation for the input (Kelley, 1967, de Marcken, 1996)

- e.g. word segmentation

 language learning=learning to translate between surface input to underlying concepts (Siklossy, 1968; Siskind, 1996)

- e.g. word learning

- language learning=learning to communicate (Bruner 1975)
 - e.g. word emergence



word segmentation

• <u>Minimal description length</u> minimize the size of the lexicon plus corpus description (Brent & Cartwright,1996)

T-ENCORT

SEGMENTATION	REPRESENTAT	LENGTH	
	LEXICON	DERIVATION	(Objective)
do you see thekitty see thekitty do you like thekitty	1 do 2 thekitty 3 you 4 like 5 see	1352 52 1342	25+10=35
do you see the kitty see the kitty do you like the kitty	1 do 2 the 3 you 4 like 5 see 6 kitty	$1 \ 3 \ 5 \ 2 \ 6 \\ 5 \ 2 \ 6 \\ 1 \ 3 \ 4 \ 2 \ 6 \\$	26+13=39
do yousee the kitty see the kitty do you like the kitty	1 do 2 the 3 you 4 like 5 see 6 kitty 7 yousee	$\begin{array}{c}1 \ \overline{7} \ 2 \ 6 \\5 \ 2 \ 6 \\1 \ 3 \ 4 \ 2 \ 6\end{array}$	33+12=45
• <u>Nor</u>	n Parametric Bayesiar	n (Chinese	Restaurant pro
maximize the probability that the corpus is generate			

DEDD DEDVTATION

• <u>Non Parametric Bayesian (Chinese Restaurant process)</u> maximize the probability that the corpus is generated by a lexicon (Goldwater, 2007; Johnson, Griffith Goldwater, 2007)

https://www.davidphenry.com/Paris/paris090_fr.htm

SEGMENTATION

4. Developmental Artificial Intelligence

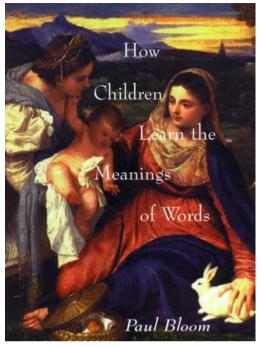
 language learning=learning a compact representation for the input (Kelley, 1967, de Marcken, 1996)

– e.g. word segmentation

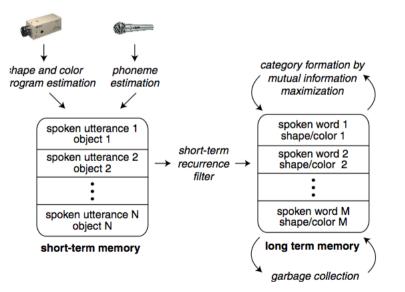
 language learning=learning to translate between surface input to underlying concepts (Siklossy, 1968; Siskind, 1996)

– e.g. word learning

- language learning=learning to communicate (Bruner 1975)
 - e.g. word emergence

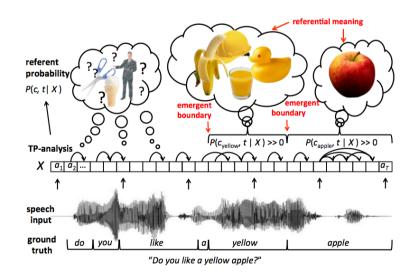


Bloom (2000), MIT Press



word learning

<u>Cross situational learning</u> learning the correspondance between words and meaning across many examples



Roy & Pentland, 2002

see also Siskind 1996; Kwiatkowski et al 2012

4. Developmental Artificial Intelligence

 language learning=learning a compact representation for the input (Kelley, 1967, de Marcken, 1996)

– e.g. word segmentation

 language learning=learning to translate between surface input to underlying concepts (Siklossy, 1968; Siskind, 1996)

– e.g. word learning

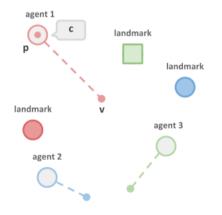
- language learning=learning to communicate (Bruner 1975)
 - e.g. word emergence

https://ikw.uni-osnabrueck.de/~neurokybernetik/projects/alear.html

Talking heads (Steels et al 2001)

word emergence

<u>Grounded communication</u> language emerges as a communication protocol to help solving a particular task



Mordatch & Abbeel 2017

see also Foerster et al., 2016; Sukhbaatar et al., 2016; Lazaridou et al., 2016; Havrilov & Titov, 2017

4. Developmental Artificial Intelligence

- language learning=learning a compact representation for the input (Kelley, 1967, de Marcken, 1996)
 - e.g. word segmentation
- language learning=learning to translate between surface input to underlying concepts (Siklossy, 1968; Siskind, 1996)
 - e.g. word learning
- language learning=learning to communicate (Bruner 1975)
 - e.g. word emergence

→ are the hypotheses and results compatible with infant data? Do they scale with real data?

In brief

	Effective	Realistic	Human/Model
	Model	Data	Comparison
Conceptual Frameworks	No (verbal)	Yes	No (verbal)
Artficial Language Learning	Yes (but not scalable)	No	Yes
Formal Linguistics	Existence proof	Idealized	In the limit
Developmental AI	Yes	Simplified	Qualitative / In the limit

	Effective	Realistic	Human/Model
	Model	Data	Comparison
Conceptual Frameworks	No (verbal)	Yes	No (verbal)
Artficial Language Learning	Yes (but not scalable)	No	Yes
Formal Linguistics	Existence proof	Idealized	In the limit
Developmental AI	Yes	Simplified	Qualitative /
			In the limit
Reverse Engineering	Yes	Yes	Yes

→the reverse engineering approach (or, new AI to the rescue)

Roadmap

Reverse engineering: *construct a* <u>scalable model</u> that discover phonetic categories <u>like infants</u> <u>do using real data.</u>

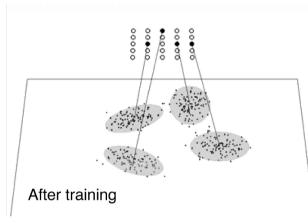
- I. Why real data?
- II. Scalable Models
- III. Testing predictions

I. Why using real data?

or: why simplification is not always a good idea

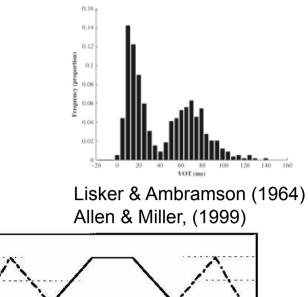
1. Variability is part of the problem

- Simplification is important in science: splitting complicated problems into simpler one
- But... simplifying changes the learning problem



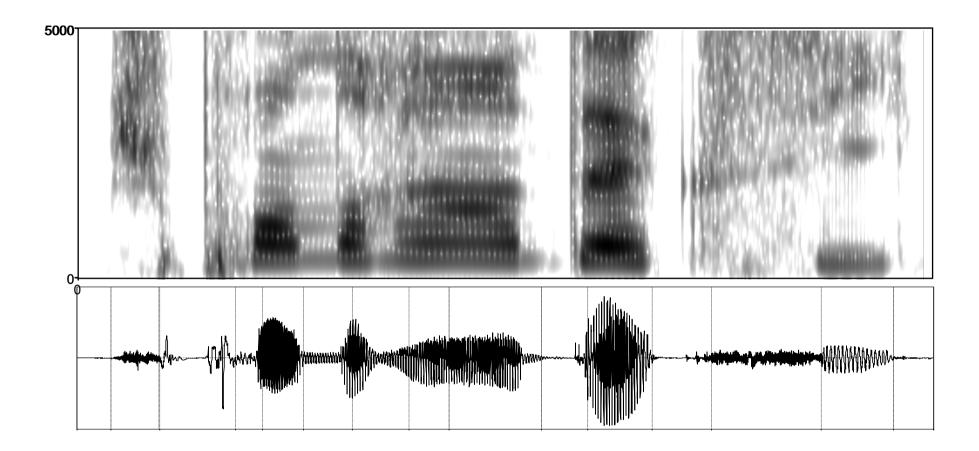
atimuli

atudy

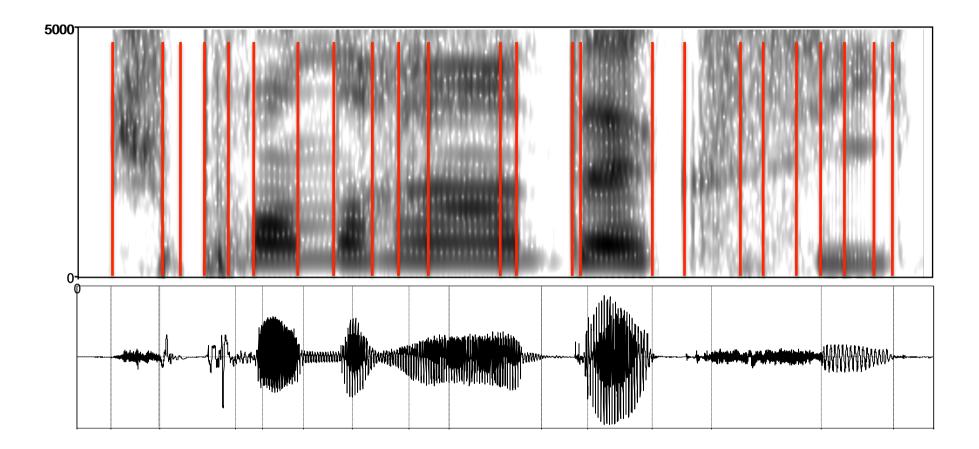


	FamiliarizationFrequency 19 4		_			Δ	
		3 Conti	4	5 [da]-[ta] \$	6 Stimuli	7	8
Nb	measures	alg		(

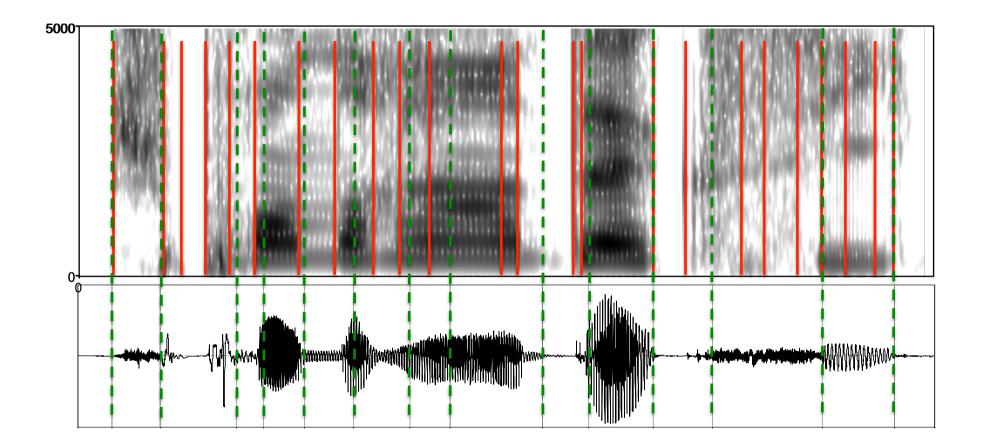
study	stimuli	ND	measures	algo
de Boer & Kuhl, (2003)	3 CVC words, 10 speakers	3	F1, Ě2	EM(N known)
	fake from mono&bisyll			
	nonwords, 20 Eng and		F1, F2,	
Vallabha et al. (2007)	10 Jap speakers	4	duration	OME, TOME
				GMM+ MLE +
McMurray et al. (2009)	english stop-V syllables	2	VOT	competitive learning
Lake et al (2009)	fake da vs ta	2	"VOT"	GMM+OME
Lake et al (2009)	fake vowels	3	F1 & F2	GMM+OME
			VOT and v	
Toscano & McMurray (2010)	fake stops	2	duration	GMM+OME
	continuous speech, 12			
Kouki et al. (2010)	speakers	5	MFCC	SOM



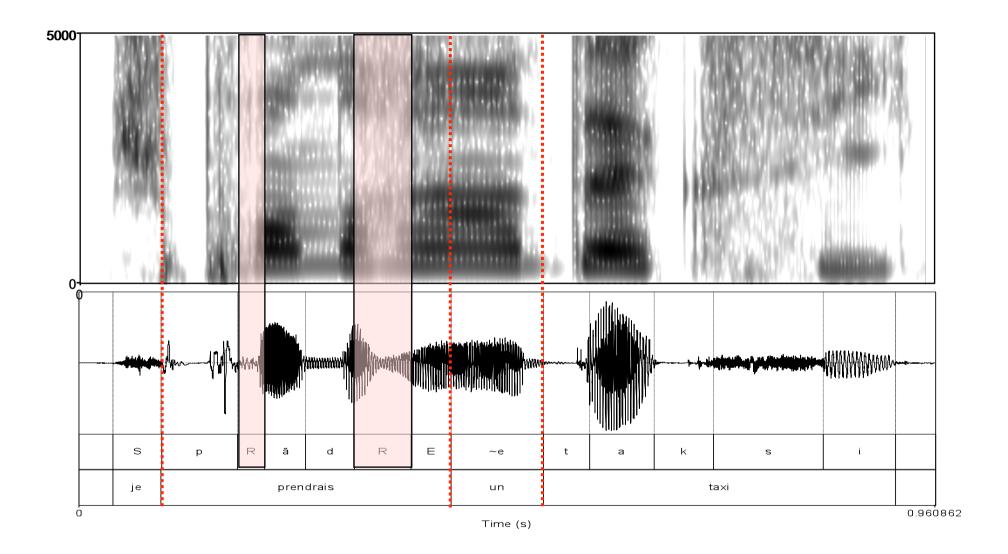
→ Does this scale up?



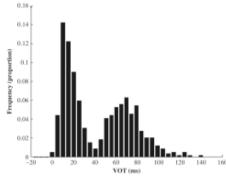
→ Does this scale up?



→ Does this scale up?

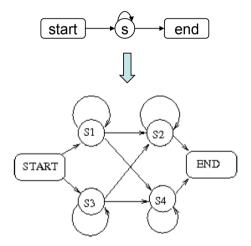


→Does this scale up? not really; phonemes are not well separated, discrete entities



Phoneme learning with real speech

Lisker & Ambramson (1964) Allen & Miller, (1999)



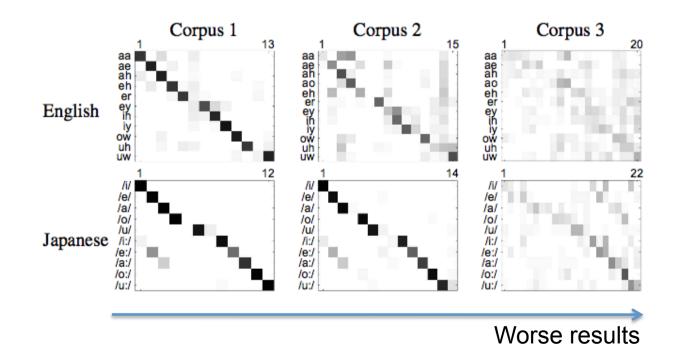
State seq	Allophones
11,28,32	[V]- t +[e a o]
15,17,2	[g k]-[u o]+[*]
3,17,2	[k t g d]-a+[k t g d]
31,5,13,5	[V]-[s sj sy]+[V]
17,2,31,11	[g t k d]-[a o]+[t k]
3,30,22,34	[*]-a
6 24 8 15 22	[*]-o
22 35 11 28 32	[N i u o]-[t d]+[e o i]
4 17 24 2 31	[s sy z]-o+[t d], [t d]-o+[s sy z]

- what is learned is pseudo phones:
- →too small
- →too context dependant
- \rightarrow too talker dependant

Varadarajan, Kudanpur & Dupoux. (2008)

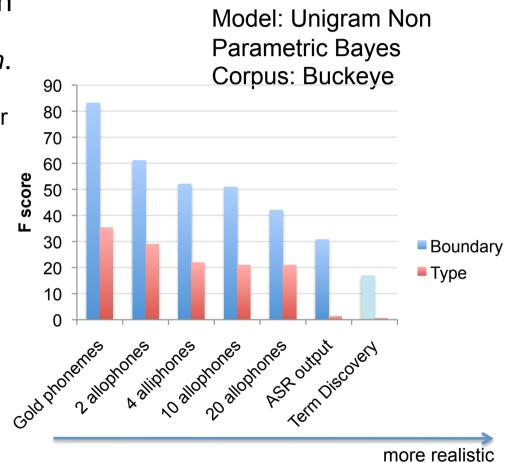
• e.g. Phoneme learning with the help of the lexicon

More realistic corpus					
Word forms	phonemic	phonetic	phonetic		
	(dictionary)	(human annotated)	(human annotated)		
Consonants	gold	gold	gold		
Vowels	Resampled F1	Resampled F1	Measured F1		
	and F2	and F2	and F2		



Antetomaso, Miyazawa, Feldman, Elsner, Hitczenko, & Mazuka (2016)

- e.g. word learning & segmentation
 - from symbolic input: Findingwordsincontinuousspeech.
 - · local probabilities: Saffran et al
 - lexical based: Brent et al Goldwater et al.
 - -> state of the art: ~ 80% correct (in English)
 - from speech:
 - 'fake data':
 - ASR contextual allophones
 - ASR output
 - real data
 - Term Discovery (Jansen)



From Fourtassi & Dupoux (2014); Ludusan et al. (2014)

ightarrow using simplified data changes the nature of the learning problem

2. Other forms of simplification

- Mode of presentation: the way in which infants are presented with language samples.
 - pedagogic curriculum: from simple to complex
 - neutral curriculum: random sample
 - adversarial curriculum: designed to make infants fail
 - →mode of presentation matters for algorithms (Gold, 1967; Angluin 1988)
 - \rightarrow Are parents pedagogic in all cultures?
- Data selection: linguistic vs non linguistic channels
 - many algorithms run on 'cleaned' data (and fail on raw data)
 - → but what counts as speech depend on the language (eg, sign vs oral; clicks; creaky voice, etc)
 - \rightarrow some nonspeech hurt (noise), other help (context)

In brief

- Simplification is useful in science, but
 - learnability is extremely dependent on input
 - changing the input means addressing a different learning problem
- Therefore, to answer the two puzzles, we have to use *realistic corpora*
- Now it is possible to do so (personal big data):

home recording (LENA device)

dense multimedia recording (Roy 2009)

life logging

ACLEW (ANR-NSF) BabyCloud

II. What kind of algorithms?

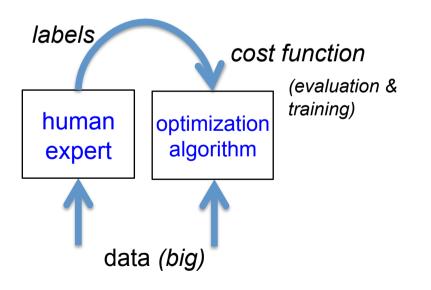
Popular AI algorithms needs a lot of (supervised) data

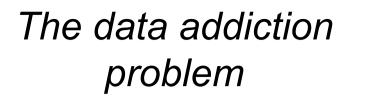
To be relevant, machine learning has to go data efficient and unsupervised

Standard Machine Learning

human supervision:

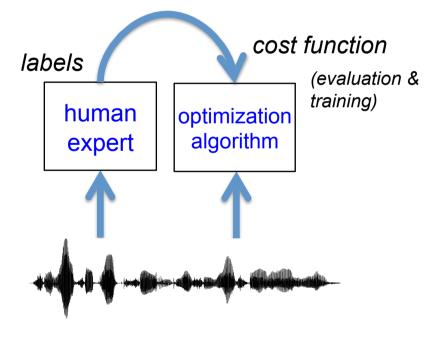
- strong (unambiguous)
 - dense (high bitrate)
 - mono directional

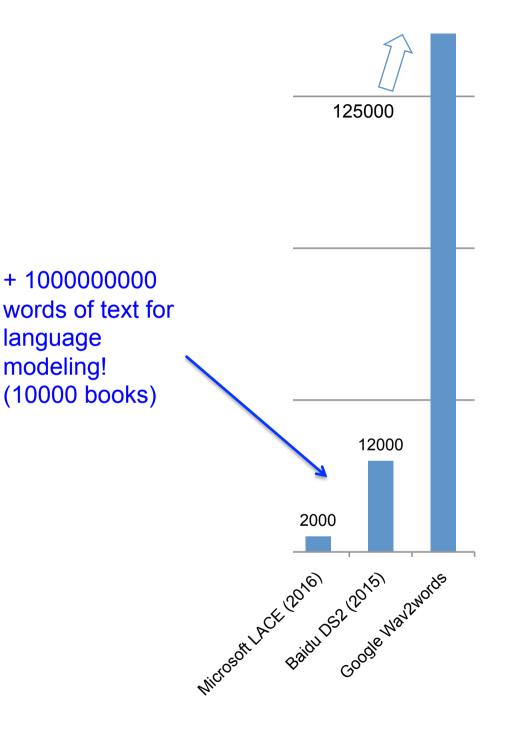




End-to-end ASR

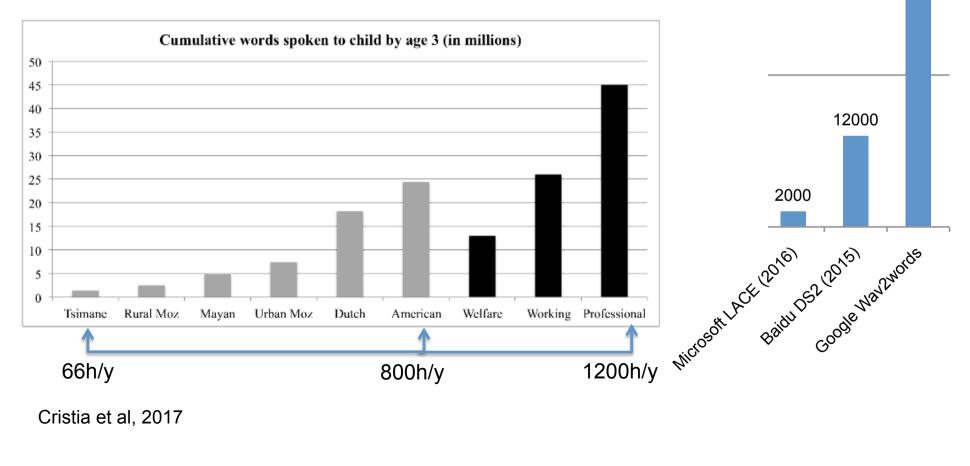
 $\ensuremath{^{\rm w}}$ She had your dark suit in greasy wash water all year $\ensuremath{^{\rm w}}$





The data addiction problem

 \rightarrow infants require less data, and no labels!



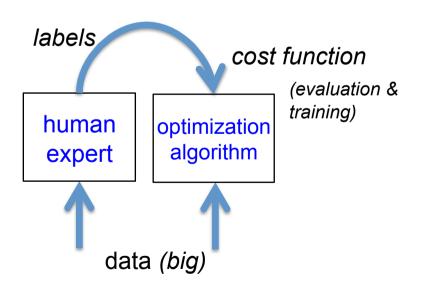
Cristia et al, 2017

'Cognitive Machine Learning'

Standard Machine Learning

human supervision:

- strong (unambiguous)
 - dense (high bitrate)
 - mono directional

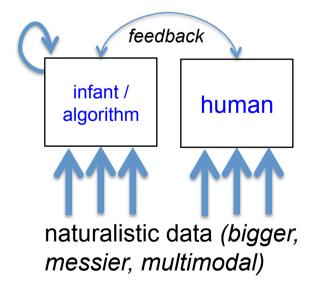


Human-like Machine Learning

human supervision:

- weak (ambiguous)
- sparse (low bitrate)
- bi-directional

cost function



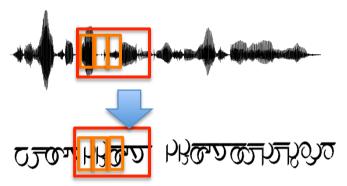
A new kind of challenge for AI

- The 'ghost' linguist conundrum:
 - you arrive in a foreign country
 - you want to construct a grammar for the language (list of phonemes, dictionary)
 - you cannot talk to the native, just listen and watch

 \rightarrow How would you do?

The zero resource challenge(s)

- In an unknown language, from raw speech discover:
 - invariant subword units (Track 1)
 - words/terms (Track 2)
- ZR15 (Interspeech 2015)
 - English (casual, 12 speakers, 5 hours)
 - Xitsonga (read, 24 speakers, 2.5 hours)
- ZR17 (ASRU 2017)
 - 3 dev languages: English, French Mandarin (12-69 speakers, 2.5-45h)
 - 2 surprise languages: German, Wolof (24-30 spakers, 10-25h)
- JSALT 2017 Spoken Rosetta Stone Workshop, CMU



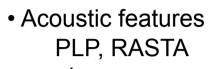
- Aalto University, Finland
- KTH, Sweden
- University of Edinburgh, UK
- U. Tilburg, Netherlands
- Ecole Normale Sup, France
- Instituto Italiano di Tecnologia, Italy
- IIT Hyderabad, India
- Stellenbosch, U. South Africa
- National Taiwan U., Taiwan
- A*STAR, Singapore
- NAIST, Japan
- Carnegie Mellon, USA
- U. Chicago, USA
- Stanford Univ, USA
- Johns Hopkins, USA
- MIT, USA

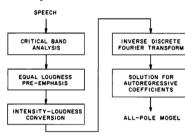
• • •

+ support from MSR, Google

www.zeropeech.com

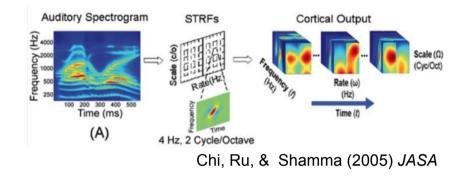
Learning acoustic representations from scratch

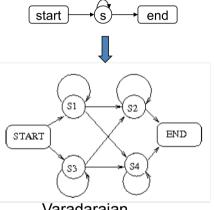




Hermanky (1990). JASA

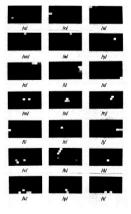
• Auditory model





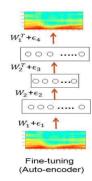
Varadarajan, Khudanpur,Dupoux, (2008)

• Kohonen's maps



Kohonen (1988), Computer

• Deep autoencoders



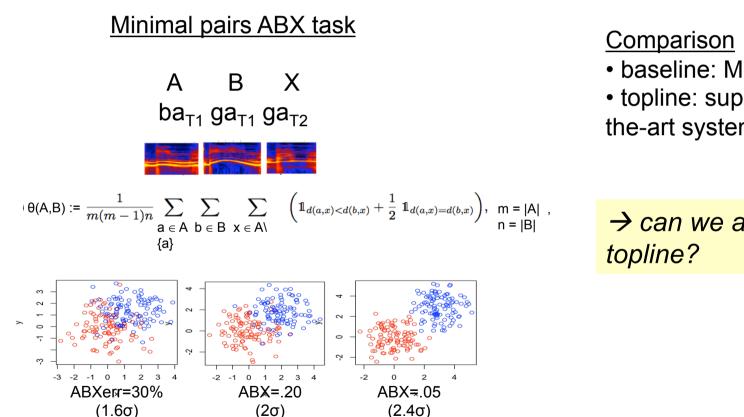
Badino, Canevari, et al (2014), *ICASSP*.

Non Parametric Bayesian Clustering

		ь	а		2	n	a
Pronunciation		[b]	[ax]	[n]	[ac]	[n]	[ax]
		-	⊯	ma	մես	uda	dh.
					· · ·		
Frame index (t)		1	2 3 4	5.6	78	9	10 11
Speech feature (x _i)		\mathbf{x}_{i}^{i}	$\mathbf{x}_{2}^{i}\mathbf{x}_{3}^{i}\mathbf{x}_{6}^{i}$	$x_{i}^{i}x_{i}^{i}$	$\mathbf{x}_{1}^{i} \mathbf{x}_{k}^{i}$	\mathbf{x}_{g}^{i}	$x_{10}^{i} x_{11}^{i}$
Boundary variable (b)		1	001	01	0 1	1	0 1
Boundary index (g_q^i)	80	8	82	- 85	- 84	g_3^i	- 85
Segment $(p_{j,k}^i)$		p_0^i	$p_{2,8}^i$	$p_{3,6}^i$	$p_{1,k}^i$	p_{iss}^i	p_{1001}^{i}
Duration $(d'_{j,i})$		1	3	2	2	1	2
Cluster label $(c_{j,k}^i)$		$c_{\rm B}^{i}$	$c_{2,k}^{i}$	$c_{i,i}^i$	c_{1k}^i	$c_{s,s}^{i}$	$c_{10,11}^{i}$
HMM (θ_c)		θ	θ_2	$\theta_{\rm p}$	θ_4	θ_3	θ_2
Hidden state (s_i^i)		1	1 2 3	13	1 3	1	1 3
Mixture ID		1	1 6 8	37	5 2	8	2 8

Lee & Glass, (2012). Proc of ACL

Learning acoustic representations: evaluation

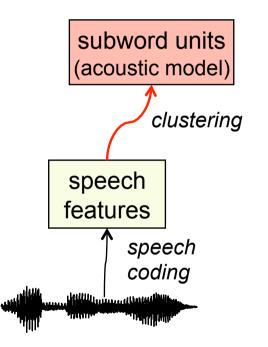


- baseline: MFCC
- topline: supervised state-ofthe-art system

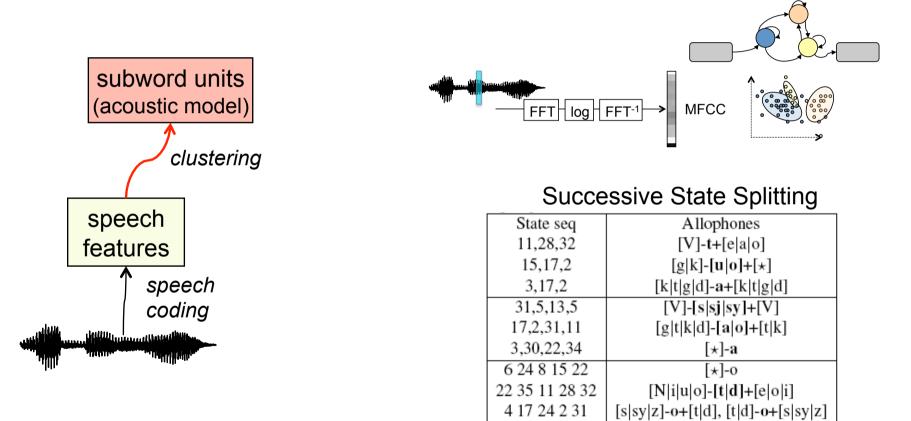
 \rightarrow can we approach the

Schatz et al, 2013;2014

Idea #1: bottom up learning

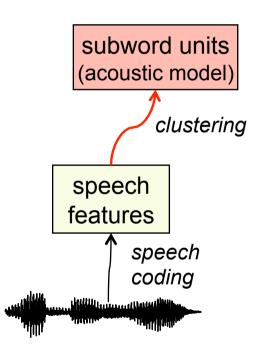


Idea #1: bottom up learning



Varadarajan, Khudanpur, Dupoux, (2008)

Idea #1: bottom up learning



Low dimension continuous representations

- Autoencoders (e.g. Badino et al. 2015)
- Probabilistic codes
 - posteriors of unsupervised GMMs (e.g. Heck et al 2015)
- Discrete codes
 - Unsupervised clustering,
 Hierarchical Bayesian (Lee & Glass,
 2012; Ondel et al 2016), binarized
 DNNs (e.g. Myriam & Salvi 2017)

 $W_1^T + \epsilon_A$

 $W_2^T + \epsilon_3$

W2+E2

 $W_1 + \epsilon_1$

0000

000...0

000.....0

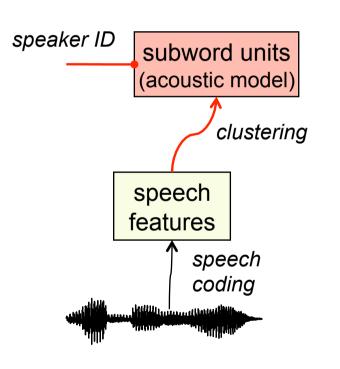
Fine-tuning (Auto-encoder)

→ Simple idea, achieves interesting result, can be made more powerful with stronger priors, needs work on scalability

Main idea: information compression

- spectral information: 20800bit/sec,
- phoneme information: ~100bits/sec
- \rightarrow a 200x reduction !

Idea #1b: invariant code



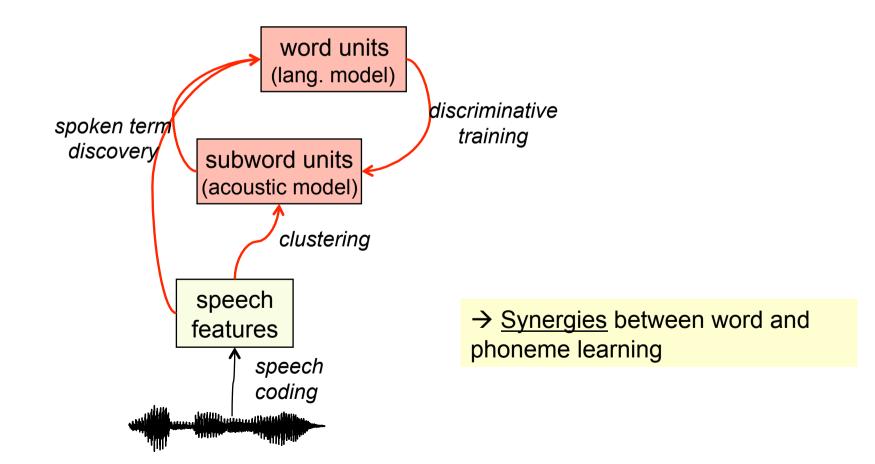
 speaker normalization

 vocal tract normalization
 fMMLR (Heck et al. 2017)

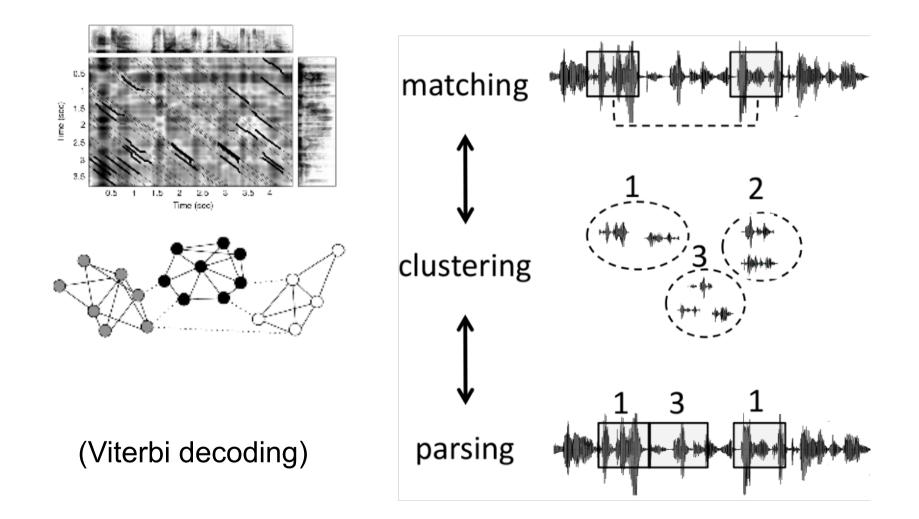
Main idea:

- assume infants know who is talking
- remove this information

Idea #2: joint lexical-sublexical learning



Spoken Term Discovery

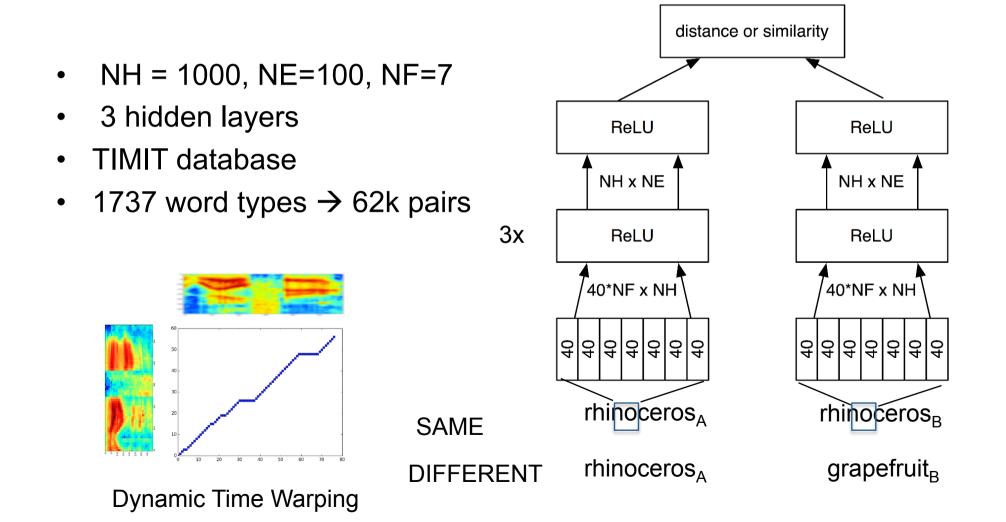


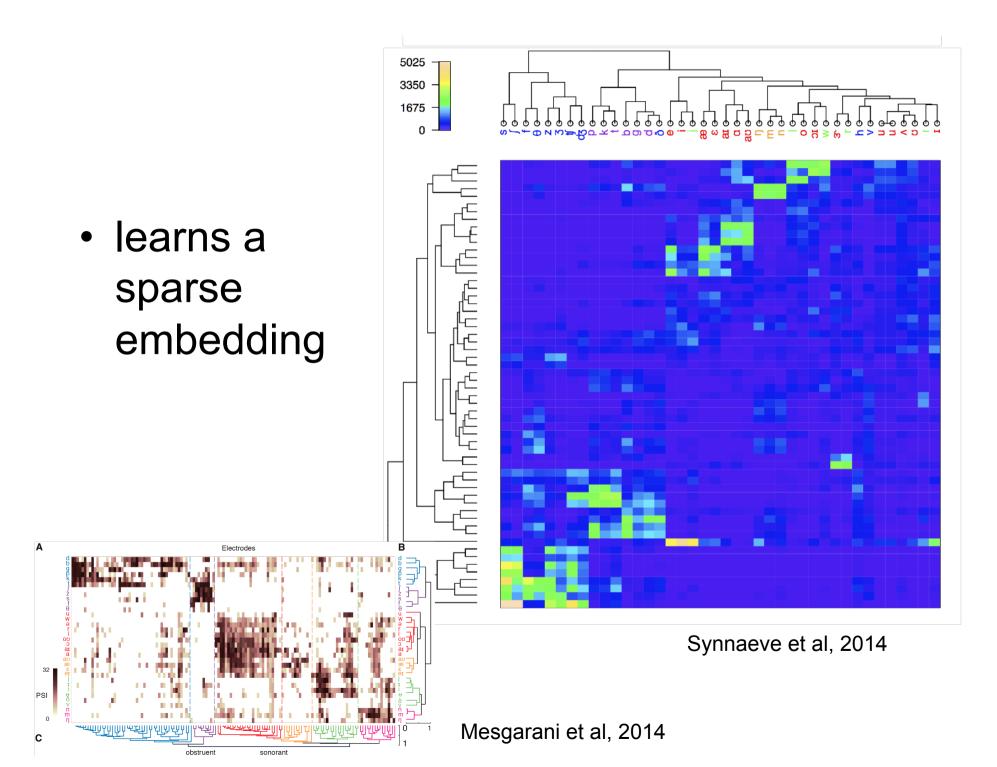
Algorithms: Park & Glass, (2008), Jansen et al. (2010), Muscariallo et al (2011)

Imagine you already have a lexicon of word forms

 $cost(X_A, X_B, \{same, different\})$ 1 - cos (Y_A, Y_B) if same

 $\cos^2(Y_A, Y_B)$ if different

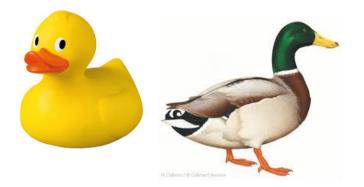




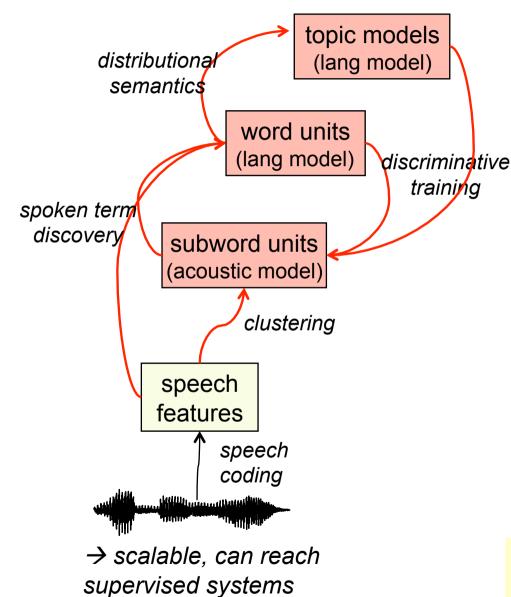
A potential problem: allophones

(/canaR/ vs /canaX/) → (R,X) allophones

(/canaR/ vs /canaL/) → (R,L) allophones

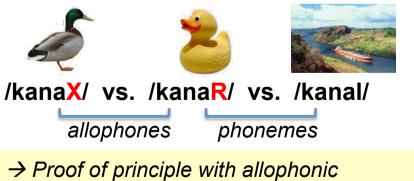


Idea #3: joint topic-lexical-sublexical learning

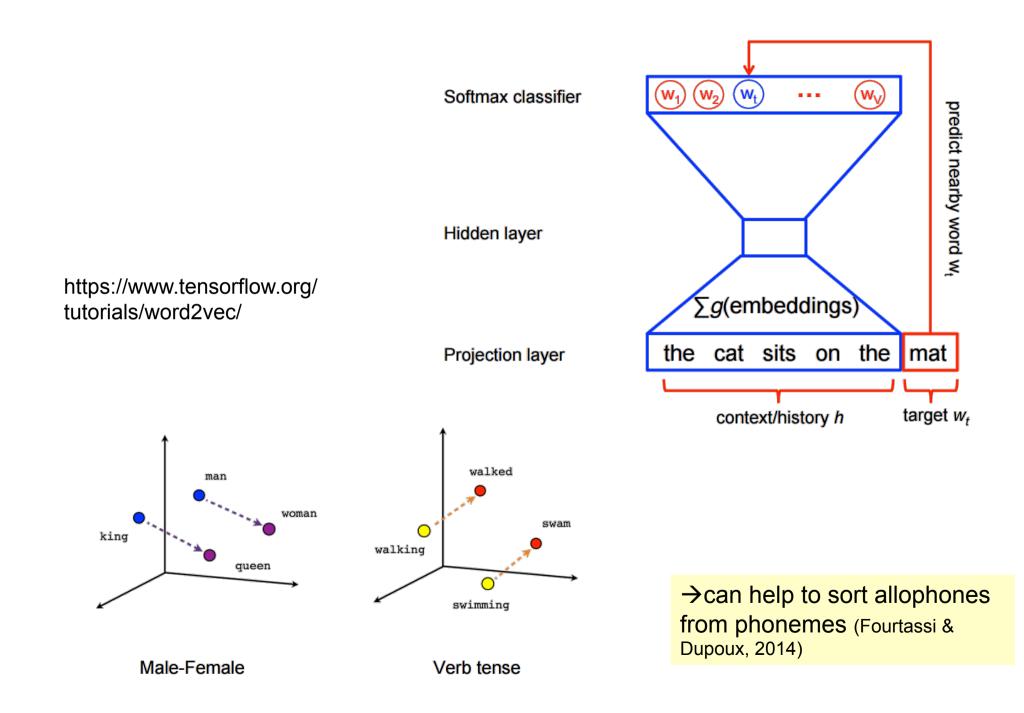


I. Learn topics on the basis of protolexicon → each protoword has now a vector representation

II. Use semantic distance to help <u>subword clustering</u> → 'semantic' cosine distance combined with acoustic distance to cluster protophonemes



transcription; not done yet with raw speech



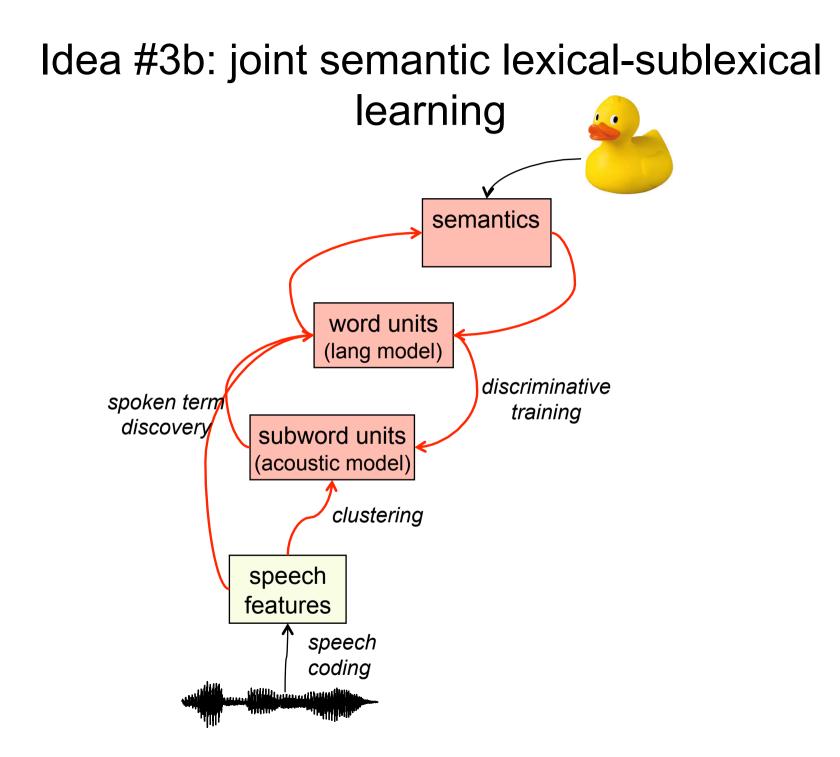
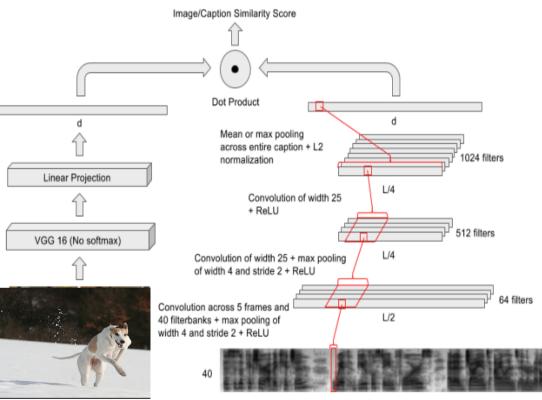


image retrieval



-A brown and white dog is running through the snow

-A dog is running in the snow

-A dog running through snow

-A white and brown dog is running through a snow covered field

-The white and brown dog is running over the surface of the snow

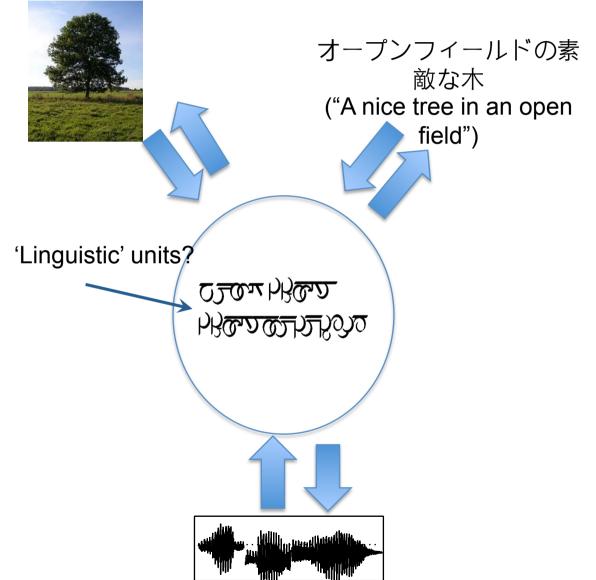
JSALT "Speaking Rosetta Project" CMU Summer 2017

Technological objective:

 Build speech technology for languages without orthographies

Scientific objective:

- Etudier l'émergence d'unités linguistiques symboliques
- dériver des prédictions



In brief

- Machine learning/AI could help understanding language acquisition
- But only if new, data efficient, unsupervised algorithms are constructed

III. What's have we learned?

Testing old theories or deriving new predictions

- Learnability in the limit: comparing with human adults
 - internal tests (comparison with gold standards: eg, segmentation F scores)
 - external tests (comparison with performance on behavioral tests: e.g. ABX discrimination tests)
 - \rightarrow already extremely constraining; most algorithms fail
- Infant/Machine comparisons:
 - Testing old theories
 - Testing new predictions

Learning in the limit: AI Psycholinguistics

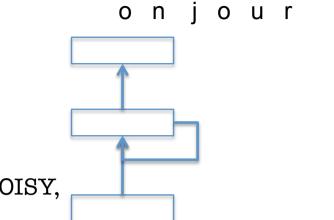
→ entrainer un réseau de neurone à prédire le caractère suivant

SCÈNE III.--ALCANTOR, BASQUE, MARIANE, DU CROISY, BESTARIN, LE BARBOUILLÉ, MASCARILLE.

MASCARILLE. Je ne puis davantage à propos.

MARIANE. o ciel! de tout ce qu'il doit faire, et sa gloire à tous deux, Qui sait se montrer des vœux de notre ressentiment: Si bien de suivre le plus grand embarras? Mais on puisse ravir à vous payer de vous faire l'ardeur.

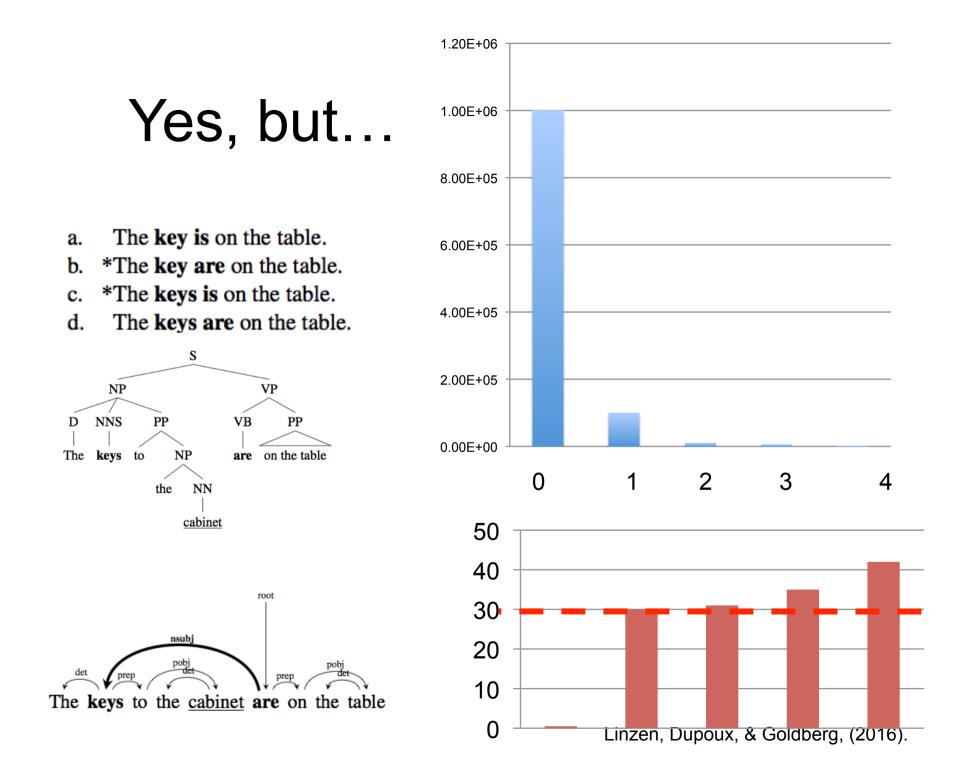
ÉRASTE. Je ne sais.



Bonjour

trained on Molière's works

Karpathy (2015). The Unreasonable Effectiveness of Recurrent Neural Networks http://karpathy.github.io/2015/05/21/rnn-effectiveness/

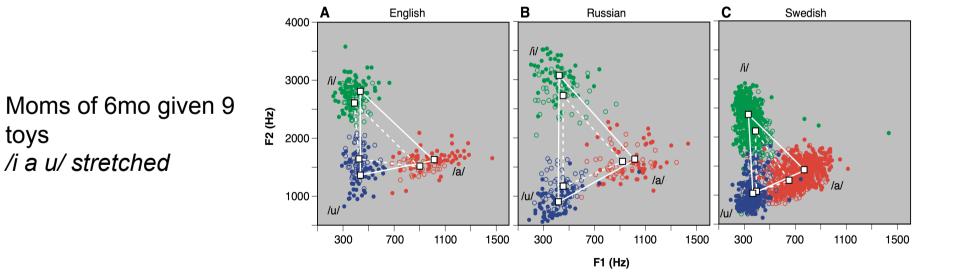


- Learnability in the limit: comparing with human adults
 - internal tests (comparison with gold standards: eg, segmentation F scores)
 - external tests (comparison with performance on behavioral tests: e.g. ABX discrimination tests)

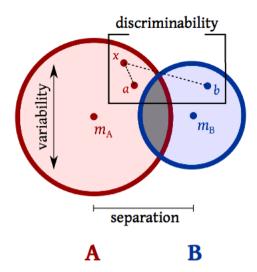
- Infant/Machine comparisons:
 - Testing old theories
 - Testing new predictions

Testing old theories: Baby talk as hyperspeech

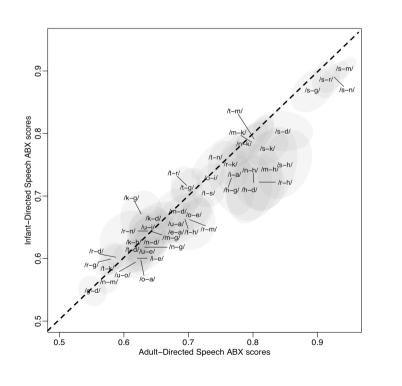
- The hyperspeech hypothesis: in IDS, parents facilitate the perception compared to ADS (Fernald, 2000).
- The hyperlearning hypothesis: in IDS parents facilitate phonetic learning (Kuhl et al 1997).

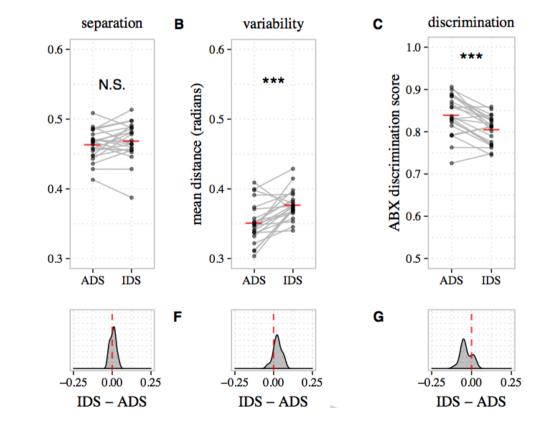


hyperarticulation hypothesis (Kuhl et al 1997)

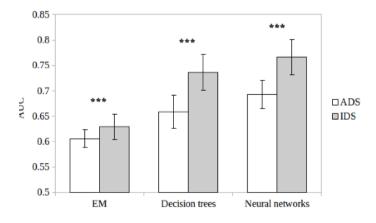


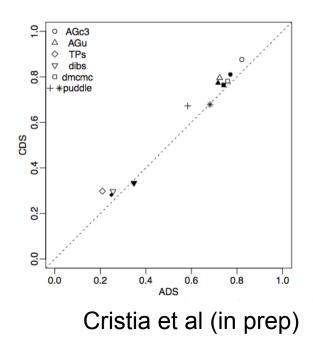
- two counteracting forces
 - slightly more separation
 - much more phonetic variability
 - Guevarra-rukoz, et al (in prep)
 - Martin et al (2015)





- other counteracting forces
 - slightly more distinct lexicon
 - onomatopeas
 - shorter sentences
 - better prosodic cues
 - Ludusan et al (2017)
 - pauses, F0 reset, duration

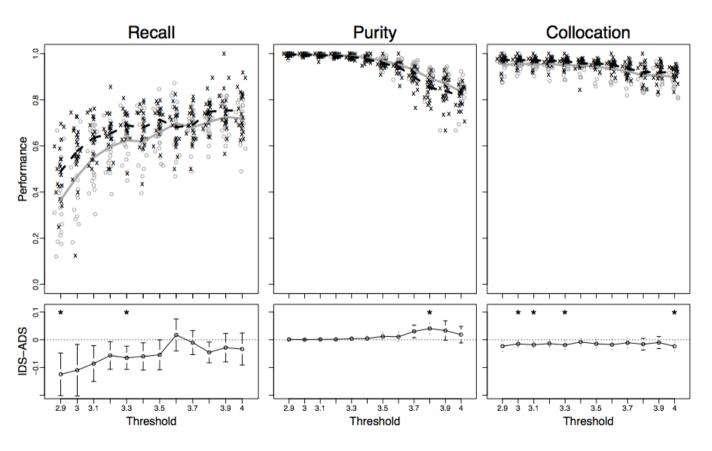




Overall effect

- spoken term discovery
 - 20 mothers
 - 20 object names
 - IDS vs ADS
 - MODIS system

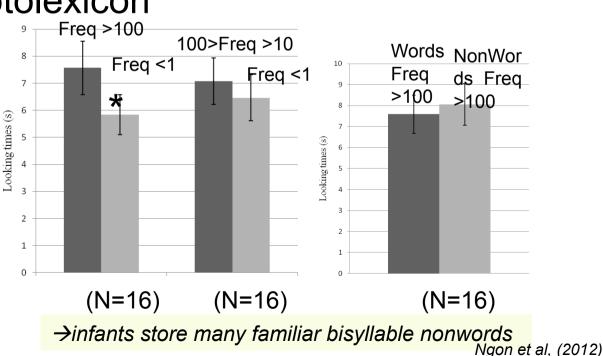
→ not much difference



Ludusan, Seidl, Dupoux, Cristia (2015)

New predictions (I): missegmentations

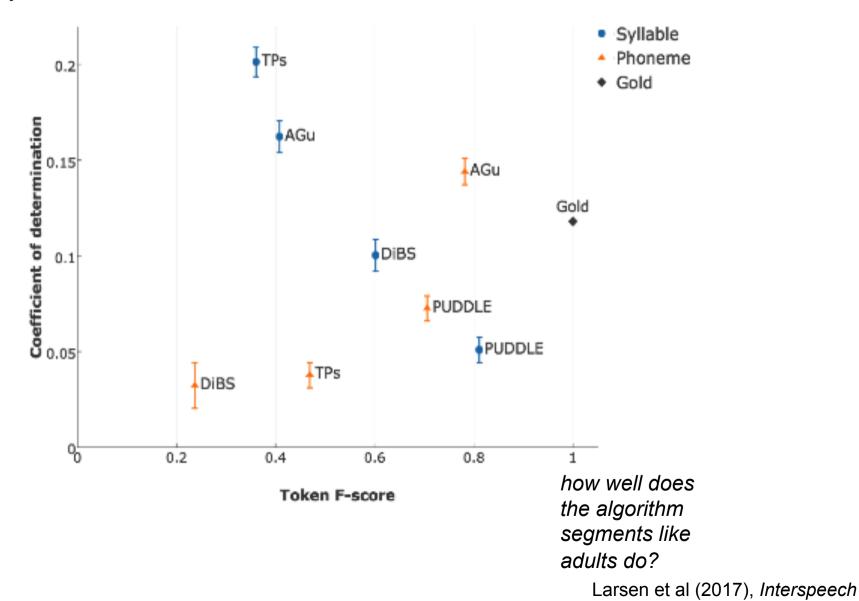
- word discovery algorithms missegment words
 - do infants missegment too?
 - the infant protolexicon



[dāla] [sepuß] [kwasa] [vafɛß] [kɔßɛ̃] [kɔßɛ̃] [mɛty] [tule] [akɛl] [vɛpa] [naply] [pasyß] [vødiß]

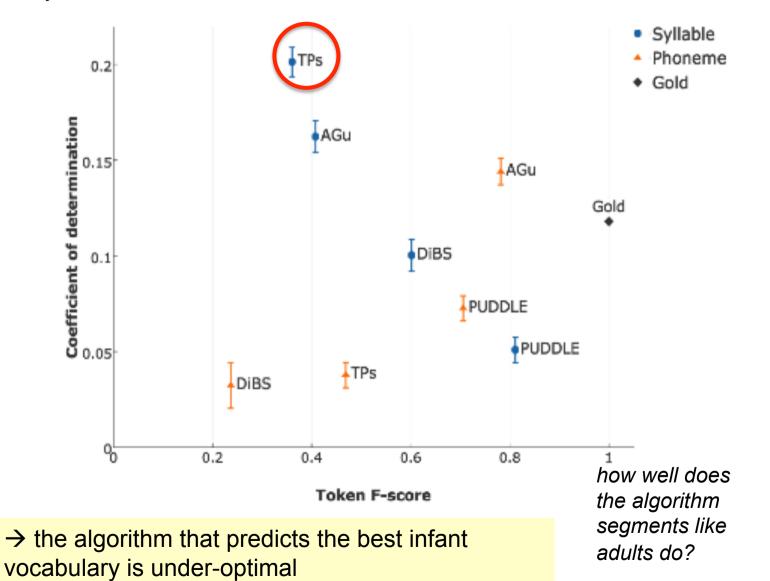
how well does the algorithm predict 13 mo infant's CDI vocabulary?

New predictions (II): predicted vocabulary

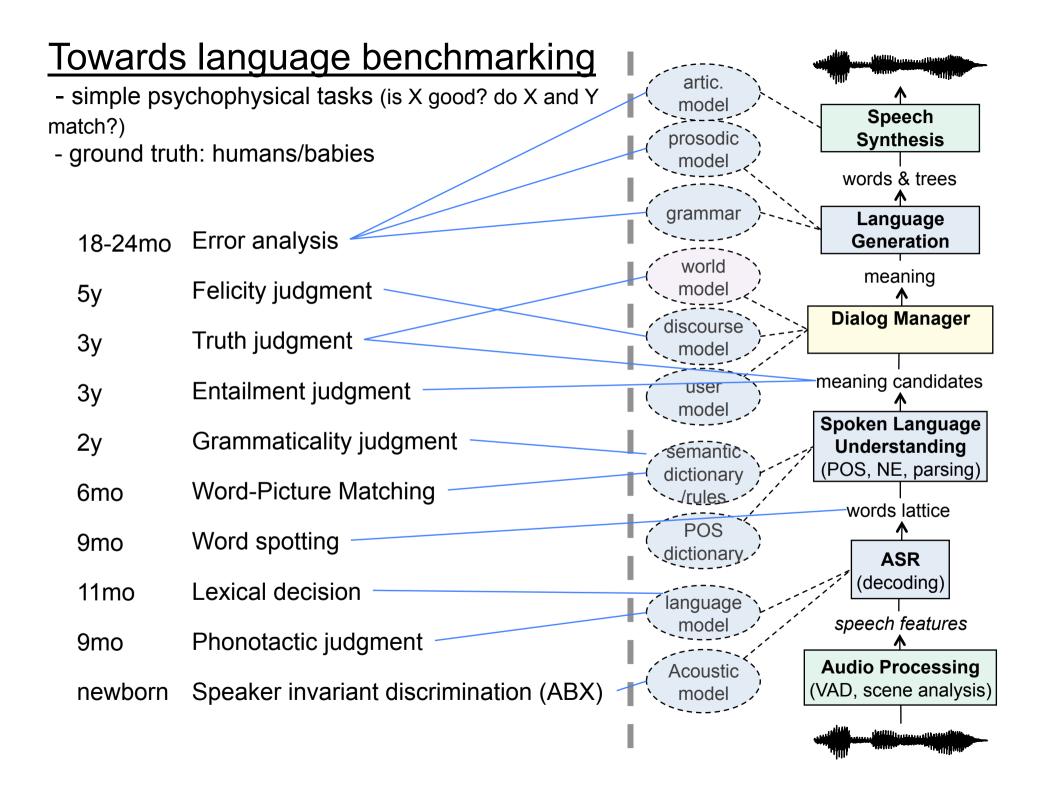


how well does the algorithm predict 13 mo infant's CDI vocabulary?

New predictions (II): predicted vocabulary

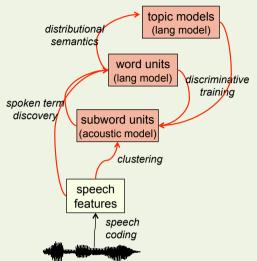


Larsen et al (2017), Interspeech



Summing up

- Reverse engineering is feasible
 - realist data
 - scalable models
 - quantitative predictions
- It addresses the two deep puzzles
 - learnability problem:
 - <u>bootstrap</u>: provides a proof of principle that (some) learning is possible from raw sensory data, (provided a specific learning architecture, -- a computationally explicit LAD)
 - <u>co-dependencies</u>: not a problem, but an asset (<u>synergies</u>)
 - learning trajectories:
 - graduality & simulaneity:
 - can be explained through synergies
 - the possibility of sub-optimal algorithms
 - <u>resilience</u>:
 - still a lot to do here (data efficiency problem of machine learning)
 - we explored the functional role of infant directed speech



Roberta

Cao

Dupoux

Cristina Ludusan Bergmann

Mark Johnson

Aren Jansen

Hynek Hermansky

Sanjeev Khudanpur

Reiko Mazuka

Catherine Urban

Roland Thiolière

Mathieu Bernard Juan

Benjuema Karadayi

Project Bootphon

2012-2017

Thank you

Ronan Rahma Chaabouni Riochet

Elin Larsen

and many interns...

Sharon Peperkamp

Francis Alex Cristia Bach

Riad

Andy Martin

Julia

Thomas Schatz

Abdellah

Fourtassi

