
Can AI help the study of 
language development?  

Emmanuel Dupoux 
Ecole des Hautes Etudes en Sciences Sociales 



0. Introduction 

•  2 deep scientific puzzles 
•  4 traditional approaches 
•  The reverse engineering approach 



Two deep scientific puzzles 
1. Logical problem 

(bootstrapping) 
–  learnability: from finite input to 

infinite competence 
–  co-dependency: chicken and 

eggs 
•  Explanation problem 

–  learning trajectories: 
simultaneous and gradual 

–  resilience: nonlinear 
relationships between inputs 
and outcomes 

- The input to the learner is finite (and small) 
- The adult competence is (almost) infinite 
! how? 
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Two deep scientific puzzles 
1. Logical problem 

(bootstrapping) 
–  learnability: from finite input to 

infinite competence 
–  co-dependency: chicken and 

eggs 
•  Explanation problem 

–  learning trajectories: 
simultaneous and gradual 

–  resilience: nonlinear 
relationships between inputs 
and outcomes 

The longest sentence in 
French (856 words, Proust, A la 
recherche du temps perdu, Vol 4) 
Sans honneur que précaire, sans 
liberté que provisoire, [..] et de 
façon qu’à eux-mêmes il ne leur 
paraisse pas un vice.

A longer sentence: 
Proust wrote « Sans honneur que 
précaire, sans liberté que 
provisoire, [..] et de façon qu’à 
eux-mêmes il ne leur paraisse pas 
un vice. »

- The input to the learner is finite (and small) 
- The adult competence is (almost) infinite 
! how? 



Two deep scientific puzzles 
1. Logical problem 

(bootstrapping) 
–  learnability: from finite input to 

infinite competence 
–  co-dependency: chicken vs eggs 

•  Explanation problem 
–  learning trajectories: 

simultaneous and gradual 
–  resilience: nonlinear 

relationships between inputs 
and outcomes 

pragmatics 
semantics 

syntax 

morphology 
phonetics 

phonology 

- Infants have a Language Acquisition Device (Chomsky, 1965) 
(an innate machine for learning any language) 

- However, learning one component requires many others 
(e.g. learning the sounds requires the words and vice versa) 

! how? 



Two deep scientific puzzles 
1. Logical problem 

(bootstrapping) 
–  learnability: from finite input to 

infinite competence 
–  co-dependency: chicken vs eggs 

2. Explanatory problem 
–  learning trajectories: 

simultaneous and gradual 
–  resilience: nonlinear relationships 

between inputs and outcomes 
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Segmentation 
 in large  
clauses 

Segmentation  
in small 
clauses 

vowel-like canonical 
babbling 

Language 
-specific 
sounds 

‘words’ 

frequent words 

Learning trajectories 
-  Simultaneous 
-  Gradual 
! how? 



Resilience 

66h/y 800h/y 
Cristia et al, 2017 

1200h/y 



Resilience 

66h/y 800h/y 
Cristia et al, 2017 

1200h/y 

-  large differences in amout of child 
directed input (up to 2000%) 
-  much smaller differences in 
differences in outcome (language 
landmarks: stable) 
! how? 



Four traditional approaches 

1. Psycholinguistics 
(conceptual) 

2. Psycholinguistics 
(experimental) 

3. Formal linguistics 
4. Developmental AI 



1. Psycholinguistics 
•  Conceptual frameworks 

– Bootstrapping problem 
•  semantic bootstrapping (Pinker, 1984) 
•  syntactic bootstrapping (Gleitman, 1990) 
•  prosodic bootstrapping (Morgan & Demuth, 1996) 

– Explanatiory problem 
•  Knowledge driven LAD (Lidz & Gagliardi 2015) 
•  WRAPSA (Juczyk, 1997) 
•  PRIMIR (Werker & Curtin, 2005) 
•  Competition Model (Bates &MacWhinney, 1987) 
•  Usage Based Theory (Tomasello, 2003) 

!  do they work? can they be implemented? 

!  can they be refuted? distinguished? 



2. Psycholinguistics (experimental) 

•  Artificial language learning 
–  distributional learning  

•  (Maye, Werker & Gerken, 2002) 

! does it scale up to realistic 
input? 

–  rule learning (ABB vs ABC, 
Markus, et al.) 

! does this help learning 
language?  

Vallabha, et al (2007 

!  does it scale up to realistic input? 

!  does this help language 
learning?  



3. Formal learning theories/linguistics 

– Learnability in the limit: Gold (1967)  
– Phonological grammar: Tesar & Smolensky 

(1998), Dresher & Kaye (1990); etc 
– Syntax: see Clark & Lappin (2011) 

Ga 

Gc(t1) Gc(t2) Gc(ta) Gc(ta) … … 

I(t1) 
I(t2) I(ta) 

I(ta) 

adult 

infant 

! are the hypotheses valid in real life? 



4. Developmental Artificial Intelligence 

•  language learning=learning a compact 
representation for the input (Kelley, 1967, de 
Marcken, 1996) 
–  e.g. word segmentation 

•  language learning=learning to translate 
between surface input to underlying concepts 
(Siklossy, 1968; Siskind, 1996) 
–  e.g. word learning 

•  language learning=learning to communicate 
(Bruner 1975) 
–  e.g. word emergence 



word segmentation 
•  Minimal description length 
 minimize the size of the lexicon plus 
 corpus description (Brent & Cartwright,1996) 

•  Non Parametric Bayesian (Chinese Restaurant process) 
maximize the probability that the corpus is generated by a 
lexicon (Goldwater, 2007; Johnson, Griffith Goldwater, 2007)    

https://www.davidphenry.com/Paris/paris090_fr.htm 



•  language learning=learning a compact 
representation for the input (Kelley, 1967, de 
Marcken, 1996) 
–  e.g. word segmentation 

•  language learning=learning to translate 
between surface input to underlying concepts 
(Siklossy, 1968; Siskind, 1996) 
–  e.g. word learning 

•  language learning=learning to communicate 
(Bruner 1975) 
–  e.g. word emergence 

4. Developmental Artificial Intelligence 



word learning 
Cross situational learning 
learning the correspondance 
between words and meaning 
across many examples 

Roy & Pentland, 2002  

Rasanen & Rasilo, 2005 

see also Siskind 1996; Kwiatkowski et al 2012 

Bloom (2000), MIT Press 



•  language learning=learning a compact 
representation for the input (Kelley, 1967, de 
Marcken, 1996) 
–  e.g. word segmentation 

•  language learning=learning to translate 
between surface input to underlying concepts 
(Siklossy, 1968; Siskind, 1996) 
–  e.g. word learning 

•  language learning=learning to communicate 
(Bruner 1975) 
–  e.g. word emergence 

4. Developmental Artificial Intelligence 



word emergence 
Grounded communication 
language emerges as a 
communication protocol to 
help solving a particular task 

Talking heads (Steels et al 2001) 
Mordatch & Abbeel 2017  

see also Foerster et al., 2016; Sukhbaatar et al., 2016; 
Lazaridou et al., 2016; Havrilov & Titov, 2017 

 https://ikw.uni-osnabrueck.de/~neurokybernetik/projects/alear.html 



•  language learning=learning a compact 
representation for the input (Kelley, 1967, de Marcken, 
1996) 
–  e.g. word segmentation 

•  language learning=learning to translate between 
surface input to underlying concepts (Siklossy, 1968; 
Siskind, 1996) 
–  e.g. word learning 

•  language learning=learning to communicate (Bruner 
1975) 
–  e.g. word emergence 

4. Developmental Artificial Intelligence 

! are the hypotheses and results compatible 
with infant data? Do they scale with real data? 



In brief 



! the reverse engineering approach 
(or, new AI to the rescue) 



Roadmap 

Reverse engineering: construct a 
scalable model that discover 
phonetic categories like infants 
do using real data. 

I.  Why real data? 
II.  Scalable Models 
III.  Testing predictions 

Dupoux, Cognition, 2018 



I. Why using real 
data? 

or: why simplification is not always a good 
idea 



1. Variability is part of the problem 

•  Simplification is important in science: splitting 
complicated problems into simpler one 

•  But… simplifying changes the learning 
problem 



•  e.g. Phoneme learning 
Lisker & Ambramson (1964) 
Allen & Miller, (1999) 
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0 0 
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0 

5000 

! Does this scale up? 
not really; phonemes are not well separated, discrete entities 



Lisker & Ambramson (1964) 
Allen & Miller, (1999) 

s start end 

Varadarajan, Kudanpur & Dupoux. (2008) 

what is learned is pseudo phones:  
! too small 
! too context dependant 
! too talker dependant 

Phoneme learning with real speech 



•  e.g. Phoneme learning with the help of the lexicon 

Word forms phonemic 
(dictionary) 

phonetic 
(human annotated) 

phonetic 
(human annotated) 

Consonants gold gold gold 
Vowels Resampled F1 

and F2 
Resampled F1 
and F2 

Measured F1 
and F2 

Antetomaso, Miyazawa, Feldman, Elsner, Hitczenko, & Mazuka (2016) 

More realistic corpus 

Worse results 



•  e.g. word learning & segmentation 
–  from symbolic input: 

Findingwordsincontinuousspeech. 
•  local probabilities: Saffran et al 
•  lexical based: Brent et al Goldwater 

et al. 
-> state of the art: ~ 80% correct (in 

English)  
–  from speech: 

•  ‘fake data’:  
–  ASR contextual allophones 
–  ASR output 

•  real data 
–  Term Discovery (Jansen) 

! using simplified data changes the nature of the learning problem 

Model: Unigram Non 
Parametric Bayes 
Corpus: Buckeye 

From Fourtassi & Dupoux (2014); Ludusan et al. (2014) 
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2. Other forms of simplification 
•  Mode of presentation: the way in which infants are 

presented with language samples. 
–  pedagogic curriculum: from simple to complex 
–  neutral curriculum: random sample 
–  adversarial curriculum: designed to make infants fail 
! mode of presentation matters for algorithms (Gold, 1967; Angluin 

1988) 

! Are parents pedagogic in all cultures?  
•  Data selection: linguistic vs non linguistic channels 

–  many algorithms run on ‘cleaned’ data (and fail on raw 
data) 

! but what counts as speech depend on the language (eg, 
sign vs oral; clicks; creaky voice, etc) 

! some nonspeech hurt (noise), other help (context) 



In brief 
•  Simplification is useful in science, but 

–  learnability is extremely dependent on input 
– changing the input means addressing a different 

learning problem 
•  Therefore, to answer the two puzzles, we 

have to use realistic corpora 
•  Now it is possible to do so (personal big data): 

home 
recording 

(LENA device) 
dense multimedia 

recording 
(Roy 2009) 

life logging 

ACLEW (ANR-NSF) 
BabyCloud 



II. What kind of 
algorithms? 

Popular AI algorithms needs a lot of 
(supervised) data 

To be relevant, machine learning has to go 
data efficient and unsupervised 



labels 

human 
expert 

human supervision: 
•  strong (unambiguous) 
•  dense (high bitrate) 

•  mono directional 

data (big) 

optimization 
algorithm 

cost function 

Standard Machine Learning 

(evaluation & 
training) 
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algorithm 
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End-to-end ASR 
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The data addiction 
problem 

+ 1000000000 
words of text for 
language 
modeling! 
(10000 books) 
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The data addiction 
problem 

! infants require less data, and no labels! 



‘Cognitive Machine Learning’ 

labels 

infant /
algorithm 

human supervision: 
•  weak (ambiguous) 
•  sparse (low bitrate) 
•  bi-directional 

naturalistic data (bigger, 
messier, multimodal) 

human human 
expert 

human supervision: 
•  strong (unambiguous) 
•  dense (high bitrate) 

•  mono directional 

data (big) 

optimization 
algorithm 

cost function 

Standard Machine Learning Human-like Machine Learning 

feedback 

cost function 

(evaluation & 
training) 



•  The ‘ghost’ linguist conundrum: 
•  you arrive in a foreign country 
•  you want to construct a grammar for the 

language (list of phonemes, dictionary) 
•  you cannot talk to the native, just listen and 

watch 

A new kind of challenge for AI 

! How would you do?  



The zero resource challenge(s) 
•  In an unknown language, from raw 

speech discover: 
–  invariant subword units (Track 1) 
–  words/terms (Track 2) 

•  ZR15 (Interspeech 2015) 
–  English (casual, 12 speakers, 5 hours) 
–  Xitsonga (read, 24 speakers, 2.5 hours) 

•  ZR17 (ASRU 2017) 
–  3 dev languages: English, French 

Mandarin (12-69 speakers, 2.5-45h) 
–  2 surprise languages: German, Wolof 

(24-30 spakers, 10-25h) 

•  JSALT 2017 Spoken Rosetta Stone 
Workshop, CMU 

•  Aalto University, Finland 
•  KTH, Sweden 
•  University of Edinburgh, UK 
•  U. Tilburg, Netherlands  
•  Ecole Normale Sup, France 
•  Instituto Italiano di Tecnologia, Italy 
•  IIT Hyderabad, India 
•  Stellenbosch,  U. South Africa 
•  National Taiwan U., Taiwan 
•  A*STAR, Singapore 
•  NAIST, Japan 
•  Carnegie Mellon, USA 
•  U. Chicago, USA 
•  Stanford Univ, USA 
•  Johns Hopkins, USA 
•  MIT, USA 
… 
+ support from MSR, Google www.zeropeech.com



Learning acoustic representations from scratch 

•  Auditory model 

•  Deep autoencoders •  Non Parametric Bayesian Clustering 

 Chi, Ru, &  Shamma (2005) JASA 

Lee & Glass, (2012). Proc of ACL 

Badino, Canevari, et al (2014), 
ICASSP.  

•  HMM state splitting 

Varadarajan, 
Khudanpur,Dupoux, (2008) 

•  Kohonen’s maps 

Kohonen (1988), Computer 

•  Acoustic features 
PLP, RASTA 
etc 

Hermanky (1990). JASA 



Learning acoustic representations: evaluation 

a ∈ A  b ∈ B  x ∈ A\
{a} 

m = |A|  ,  
n = |B| 

θ(A,B) := 

Schatz et al, 2013;2014 

Minimal pairs ABX task 

A       B      X 
baT1 gaT1 gaT2 

ABX=.20 
(2σ) 

ABX=.05 
(2.4σ) 

ABXerr=30% 
(1.6σ) 

Comparison 
•  baseline: MFCC 
•  topline: supervised state-of–
the-art system 

! can we approach the 
topline? 



subword units 
(acoustic model) 

speech 
features 

speech 
coding 

Idea #1: bottom up learning 

clustering 



subword units 
(acoustic model) 

speech 
features 

speech 
coding 

Idea #1: bottom up learning 

clustering 

Varadarajan, Khudanpur,Dupoux, (2008) 

Successive State Splitting 

FFT log FFT-1 MFCC 



subword units 
(acoustic model) 

speech 
features 

speech 
coding 

Idea #1: bottom up learning 

clustering 

! Simple idea, achieves 
interesting result, can be made 
more powerful with stronger priors, 
needs work on scalability 

•  Low dimension continuous 
representations 
–  Autoencoders (e.g. Badino et al. 2015) 

•  Probabilistic codes 
–  posteriors of unsupervised GMMs 

(e.g. Heck et al 2015) 
•  Discrete codes 

–  Unsupervised clustering, 
Hierarchical Bayesian (Lee & Glass, 
2012; Ondel et al 2016), binarized 
DNNs (e.g. Myriam & Salvi 2017) 

Main idea: information compression 
•  spectral information:   20800bit/sec,  
•  phoneme information: ~100bits/sec  
•  ! a 200x reduction ! 



subword units 
(acoustic model) 

speech 
features 

speech 
coding 

Idea #1b: invariant code 

clustering 

Main idea:  
•   assume infants know who is talking 
•   remove this information 

speaker ID 

•  speaker 
normalization 
–  vocal tract 

normalization 
–  fMMLR 
(Heck et al. 2017) 



subword units 
(acoustic model) 

speech 
features 

speech 
coding 

Idea #2: joint lexical-sublexical learning 

clustering 

word units 
(lang. model) 

spoken term 
discovery 

discriminative 
training 

! Synergies between word and 
phoneme learning 



Spoken Term Discovery 

Algorithms: Park & Glass, (2008), Jansen et 
al. (2010), Muscariallo et al (2011) 

(Viterbi decoding) 



Imagine you already have a lexicon of word forms 

•   NH = 1000, NE=100, NF=7  
•   3 hidden layers  
•  TIMIT database 
•  1737 word types ! 62k pairs 

3x 

rhinocerosA rhinocerosB 

rhinocerosA grapefruitB 

SAME 

DIFFERENT 
Dynamic Time Warping 



•  learns a 
sparse 
embedding 

Mesgarani et al, 2014 

Synnaeve et al, 2014  



 (/canaR/ vs /canaX/) " (R,X) 
allophones 

 (/canaR/ vs /canaL/) " (R,L) allophones  

A potential problem: allophones 



subword units 
(acoustic model) 

speech 
features 

speech 
coding 

Idea #3: joint topic-lexical-sublexical learning 

clustering 

word units 
(lang model) 

spoken term 
discovery 

discriminative 
training 

I. Learn topics on the basis of 
protolexicon 
! each protoword has now a vector 
representation 

! Proof of principle with allophonic 
transcription; not done yet with raw speech 

II. Use semantic distance to help 
subword clustering 
! ‘semantic’ cosine distance 
combined with acoustic distance to 
cluster protophonemes 

! scalable, can reach 
supervised systems 

Fourtassi & Dupoux (2014) 

topic models 
(lang model) distributional 

semantics 

 /kanaX/  vs.  /kanaR/  vs.  /kanal/ 
   allophones        phonemes 



https://www.tensorflow.org/
tutorials/word2vec/ 

! can help to sort allophones  
from phonemes (Fourtassi & 
Dupoux, 2014) 



subword units 
(acoustic model) 

speech 
features 

speech 
coding 

Idea #3b: joint semantic lexical-sublexical 
learning 

clustering 

word units 
(lang model) 

spoken term 
discovery 

discriminative 
training 

semantics  



image retrieval 

Harwarth & Glass 2015; 2016; 2017; Chrupala et al. 2017 

-A brown and white dog is running through the snow
-A dog is running in the snow
-A dog running through snow

-A white and brown dog is running through a snow covered field
-The white and brown dog is running over the surface of the snow



Technological 
objective: 

•  Build speech 
technology for 
languages without 
orthographies 

Scientific 
objective: 

•  Etudier l’émergence 
d’unités linguistiques 
symboliques 

•  dériver des 
prédictions 

‘Linguistic’ units? 

オープンフィールドの素
敵な⽊木 

(“A nice tree in an open 
field”) 

JSALT “Speaking Rosetta Project” CMU Summer 2017 

www.lti.cs.cmu.edu/2017-jelinek-workshop Scharenborg et al, (2018). ICASSP 



In brief 

•  Machine learning/AI could help 
understanding language acquisition 

•  But only if new, data efficient, 
unsupervised algorithms are constructed 



III. What’s have we 
learned? 

Testing old theories or deriving new 
predictions 



•  Learnability in the limit: comparing with 
human adults 
–  internal tests (comparison with gold standards: 

eg, segmentation F scores) 
–  external tests (comparison with performance on 

behavioral tests: e.g. ABX discrimination tests) 

•  Infant/Machine comparisons: 
– Testing old theories 
– Testing new predictions 

! already extremely constraining; most algorithms fail 



SCÈNE III.--ALCANTOR, BASQUE, MARIANE, DU CROISY, 
BESTARIN, LE BARBOUILLÉ, MASCARILLE. 

  MASCARILLE. 
  Je ne puis davantage à propos.

  MARIANE.                                                                                                                   
  o ciel! de tout ce qu'il doit faire, et sa gloire à tous deux,
  Qui sait se montrer des vœux de notre ressentiment:
  Si bien de suivre le plus grand embarras?
  Mais on puisse ravir à vous payer de vous faire l'ardeur.  

  ÉRASTE.
  Je ne sais.

Karpathy (2015). The Unreasonable Effectiveness of Recurrent Neural 
Networks http://karpathy.github.io/2015/05/21/rnn-effectiveness/

B  o   n    j   o   u   r 

o   n    j   o   u   r 
! entrainer un réseau de neurone à prédire 
le caractère suivant 

trained on Molière’s works 

Learning in the limit: AI Psycholinguistics 



Yes, but… 

Linzen, Dupoux, & Goldberg, (2016). 

0.00E+00 

2.00E+05 

4.00E+05 

6.00E+05 

8.00E+05 

1.00E+06 

1.20E+06 

0            1         2          3             4 

0 
10 
20 
30 
40 
50 



•  Learnability in the limit: comparing with 
human adults 
–  internal tests (comparison with gold standards: 

eg, segmentation F scores) 
–  external tests (comparison with performance on 

behavioral tests: e.g. ABX discrimination tests) 

•  Infant/Machine comparisons: 
– Testing old theories 
– Testing new predictions 



•  The hyperspeech hypothesis: in IDS, parents facilitate 
the perception compared to ADS (Fernald, 2000). 

•  The hyperlearning hypothesis: in IDS parents facilitate 
phonetic learning (Kuhl et al 1997).  

hyperarticulation hypothesis (Kuhl et al 1997) 

Moms of 6mo given 9 
toys 
/i a u/ stretched 

Testing old theories: Baby talk as hyperspeech 



•  two counteracting forces 
–  slightly more separation 
–  much more phonetic variability 

•  Guevarra-rukoz, et al (in prep) 
•  Martin et al (2015) 



•  other counteracting forces 
–  slightly more distinct lexicon 

•  onomatopeas 
–  shorter sentences 

–  better prosodic cues 
•  Ludusan et al (2017) 
•  pauses, F0 reset, duration 

Cristia et al (in prep) 



Overall effect 

•  spoken term 
discovery 
–  20 mothers 
–  20 object 

names 
–  IDS vs ADS 
–  MODIS 

system 

! not much 
difference 

Ludusan, Seidl, Dupoux, Cristia (2015)  



•  word discovery  algorithms mis-
segment words 
– do infants missegment too? 
–  the infant protolexicon 

Freq >100 

Freq <1 Freq <1 
100>Freq >10 

* 
Words  
Freq 
>100 

NonWor
ds  Freq 
>100 

 (N=16)  (N=16)  (N=16) 
!infants store many familiar bisyllable nonwords 

New predictions (I): 
missegmentations 

Ngon et al, (2012) 



New predictions (II): predicted vocabulary 

Larsen et al (2017), Interspeech 

how well does 
the algorithm 
segments like 
adults do? 

how well does the 
algorithm predict  
13 mo infant’s CDI 
vocabulary? 



New predictions (II): predicted vocabulary 

how well does 
the algorithm 
segments like 
adults do? 

how well does the 
algorithm predict  
13 mo infant’s CDI 
vocabulary? 

! the algorithm that predicts the best infant 
vocabulary is under-optimal 

Larsen et al (2017), Interspeech 



speech features 

ASR  
(decoding) 

Audio Processing 
(VAD, scene analysis) 

Spoken Language 
Understanding 

(POS, NE, parsing) 

Acoustic 
model 

language 
model 

POS 
dictionary 

semantic 
dictionary

/rules 

user 
model 

discourse 
model 

world 
model 

words lattice 

grammar 

prosodic 
model 

artic. 
model 

meaning candidates 

Dialog Manager 

meaning 

words & trees 

Language 
Generation 

Speech 
Synthesis 

Speaker invariant discrimination (ABX) 

Lexical decision 

Word spotting 

Phonotactic judgment 

Word-Picture Matching 

Truth judgment 

Entailment judgment 

Felicity judgment 

Error analysis 18-24mo 

5y 

3y 

3y 

6mo 

9mo 

11mo 

newborn 

9mo 

Grammaticality judgment 2y 

Towards language benchmarking 
 - simple psychophysical tasks (is X good? do X and Y 
match?) 
 - ground truth: humans/babies 



Summing up 
•  Reverse engineering is feasible 

–  realist data 
–  scalable models 
–  quantitative predictions 

•  It addresses the two deep puzzles 
–  learnability problem: 

•  bootstrap: provides a proof of principle that (some) learning is 
possible from raw sensory data, (provided a specific learning 
architecture, -- a computationally explicit LAD) 

•  co-dependencies: not a problem, but an asset (synergies) 
–  learning trajectories: 

•  graduality & simulaneity:  
–  can be explained through synergies 
–  the possibility of sub-optimal algorithms 

•  resilience:  
–  still a lot to do here (data efficiency problem of machine learning) 
–  we explored the functional role of infant directed speech 

subword units 
(acoustic model) 

speech 
features 

speech 
coding 

clustering 

word units 
(lang model) 

spoken term 
discovery 

discriminative 
training 

topic models 
(lang model) distributional 

semantics 
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